Моделирование систем и процессов

Лекция 5.

Теория систем массового обслуживания

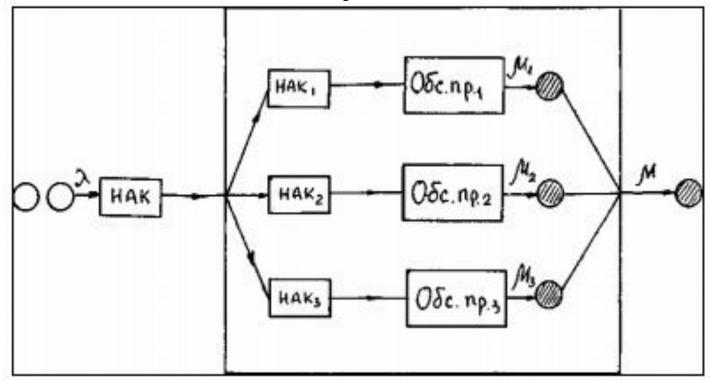
Анализ систем массового обслуживания

Теория массового обслуживания изучает модели систем массового обслуживания (СМО), представляющие собой системы, которые по одному или многим каналам обслуживают поступающие в них заявки.

Примеры СМО: АТС, кассы, АТБ, диспетчер.

Структура СМО определяется количеством и типом обслуживающих приборов, а так же накопителем.

Компоненты системы массового обслуживания



- Входящий поток заявок, который может быть охарактеризован интенсивностью потока ^λ
- Приборы (каналы) обслуживания, которых в системе может быть один (одноканальная система) или несколько (многоканальная система).
- Накопители (устройства для обеспечения ожидания обслуживания), которые могут располагаться как перед всей системой, так и перед каждым каналом обслуживания.
- Выходящий поток обслуженных заявок, который может быть охарактеризован интенсивностью обслуживания ^µ.

- Поток событий
- Стационарный поток
- Ординарный поток
- В потоке отсутствует последействие
- Пуассоновский поток
- Простейший поток
- Интенсивность потока

Классификация систем массового обслуживания

- Пвх характер входящего потока
- Воб распределение времени обслуживания
- Nпр число обслуживающих приборов
- Енак емкость накопителя (длина очереди)

$$\Pi_{\text{вх}}$$
 / $B_{\text{об}}$ / $N_{\text{пр}}$ / $E_{\text{нак}}$

Характер входящего потока

- М (Markovian) входящий поток требований является Пуассоновским, т.е. распределение времени между поступающими заявками подчинено экспоненциальному закону; Е (Erlangian) входящий поток является Эрланговским;
- D (Determenistic) детерминированный постоянный поток;
- G (General) произвольный рекуррентный поток.

Распределение времени обслуживания

- М распределение по экспоненциальному закону;
- Е распределение по закону Эрланга;
- D время обслуживания постоянная величина;
- G произвольное распределение времени обслуживания.

Классификация систем с Марковскими процессами обслуживания

- М/М/1/0 одноканальная СМО с отказами;
- M/M/n/0 многоканальная СМО с отказами;
- М/М/1/т одноканальная СМО с ожиданием (ёмкость накопителя равна т);
- М/М/n/m многоканальная СМО с ожиданием, но с возможностью отказа (число каналов - n, ёмкость накопителя равна m);
- М/М/1/∞ одноканальная СМО с ожиданием без отказа (ёмкость накопителя равна ∞).

Показатели качества обслуживания СМО

- Ротк вероятность потери заявки (вероятность отказа),
- Ро вероятность простоя,
- λ интенсивность поступления заявок,
- µ интенсивность обслуживания,
- ρ=λ/µ приведенная интенсивность потока заявок,
- A=λ*q абсолютная пропускная способность,
- q среднее число заявок за единицу времени,
- ω среднее число заявок под обслуживанием

для M/M/n/m ω=z,

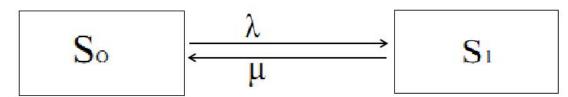
для M/M/1/∞, при ρ>1 ω= ρ

toж – среднее время ожидания в очереди,

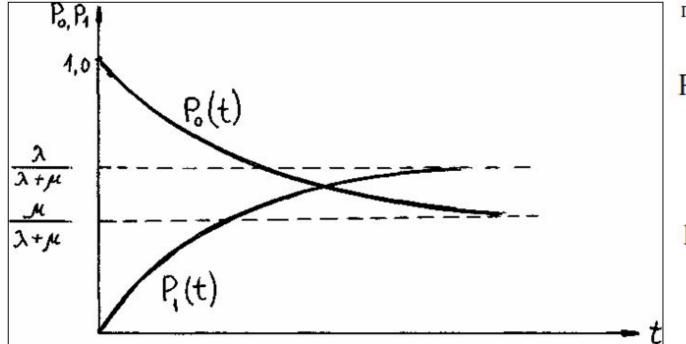
tcист – общее время пребывания в системе

z – среднее число занятых каналов для многоканальных СМО

а) М/М/1/0 – одноканальная СМО с отказами



Po (t)=
$$\frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t}$$



при
$$t \to \infty$$

$$P_1(t) = \frac{\lambda}{\lambda + \mu}$$

$$P_0(t) = \frac{\mu}{\lambda + \mu}$$

- а) М/М/1/0 одноканальная СМО с отказами
- Относительная пропускная способность

$$q = P_0(t) = \frac{\mu}{\lambda + \mu}$$

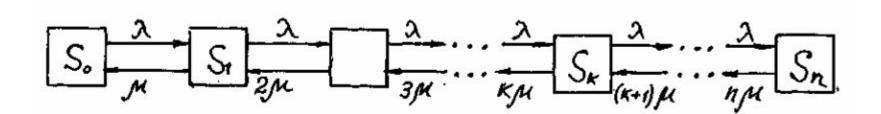
• Абсолютная пропускная способность

$$A = \lambda *_{q}=P_{0}(t) = \lambda \frac{\mu}{\lambda + \mu}$$

• DEPUNITUULE UIKASA

$$P_{\text{otk}}(t) = 1 - \frac{\mu}{\lambda + \varpi} = \frac{\lambda}{\lambda + \mu}$$

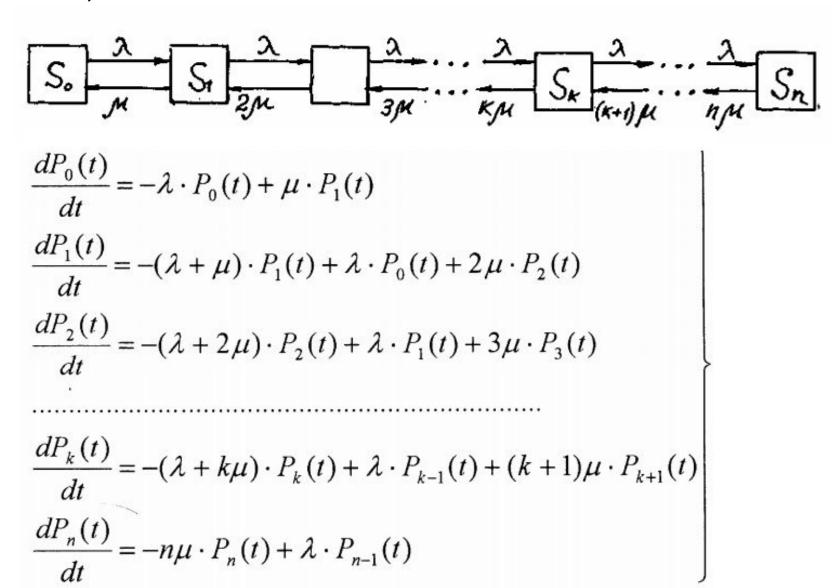
б) М/М/n/0 – многоканальная СМО с отказами



Состояния п - канальной системы:

- S₀ система полностью свободна;
- S₁ занят один канал, остальные каналы свободны;
- S₂- занято два канала, остальные каналы свободны;
-;
- S_i занято і каналов, остальные каналы свободны;
-
- S_n заняты все п каналов.

б) М/М/n/0 – многоканальная СМО с отказами



б) M/M/n/0 – многоканальная СМО с отказами Вероятность того, что система свободна

$$P_{0} = \left[1 + \frac{\lambda/\mu}{1!} + \frac{(\lambda/\mu)^{2}}{2!} + \dots + \frac{(\lambda/\mu)^{n}}{n!} \right]^{-1}$$

Вероятность отказа

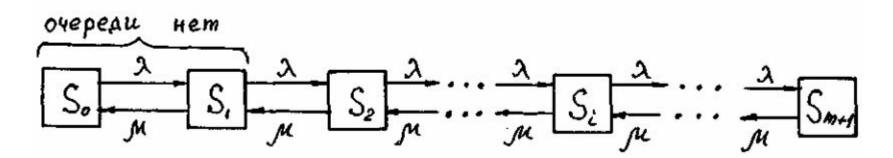
$$\underbrace{\rho}_{\text{OTK}} = P_{\text{n}} = \underbrace{n!} P_{\text{o}}$$

Относительная пропускная способность q=1- P_{отк}

Абсолютная пропускная способность $A = \lambda \cdot q = \lambda \cdot (1 - P_{\text{отк}})$

Среднее число занятых каналов $\bar{z} = \frac{A}{\mu} = \frac{\lambda \cdot (1 - P_{\text{отк}})}{\mu} = \rho \cdot (1 - P_{\text{отк}})$

а) М/М/1/m – одноканальная СМО с ожиданием



- S₀ канал свободен;
- S₁ канал занят, очереди нет;
- S₂ канал занят, одна заявка стоит в очереди;
- -
- S_i канал занят, i-1 заявок стоит в очереди;
- S_m+i канал занят, m заявок стоит в очереди (накопитель полностью загружен).

$$P_1 = \rho \cdot P_0$$

$$P_2 = \rho^2 \cdot P_0$$

$$P_k = \rho^k \cdot P_0$$

$$P_{m+1} = \rho^{m+1} \cdot P_0$$

а) M/M/1/m – одноканальная СМО с ожиданием Вероятность того, что система свободна

$$P_0 = \left[1 + \rho + \rho^2 + ... + \rho^{m+1}\right]^{-1}$$
 $P_0 = \left[\frac{(1 - \rho^{m+2})}{(1 - \rho)}\right]^{-1} = \frac{1 - \rho}{1 - \rho^{m+2}}$ Вероятность отказа

$$P_{om\kappa} = p_{m+1} = \rho^{m+1} \cdot P_0 = \frac{\rho^{m+1}(1-\rho)}{1-\rho^{m+2}}$$
 Относительная пропускная способность $A = \lambda \cdot q$

Абсолютная пропускная способность

$$q = 1 - P_{om\kappa} = 1 - \frac{\rho^{m+1}(1-\rho)}{1-\rho^{m+2}} = \frac{1-\rho^{m+1}}{1-\rho^{m+2}}$$

Среднее число заявок в очереди

$$\overline{r} = \frac{\rho^2 \left[1 - \rho^m (m + 1 - m\rho) \right]}{(1 - \rho^{m+2})(1 - \rho)}$$

а) М/М/1/m – одноканальная СМО с ожиданием
 Общее число заявок в системе

$$\bar{k} = \bar{r} + \bar{w} \qquad \bar{k} = \bar{r} + \frac{\rho - \rho^{m+2}}{1 - \rho^{m+2}}$$

Мат. ожидание числа заявок под обслуживанием

$$\overline{w} = 0 \cdot P_0 + 1 \cdot (1 - P_0) = \frac{\rho - \rho^{m+2}}{1 - \rho^{m+2}}$$

Среднее время ожидания

$$t_{cp} = \frac{1}{\lambda}$$

Среднее время обслуживания одной заявки

$$\bar{t}_{\rm cp} = \frac{1}{\mu}$$

Общее среднее время пребывания в системе

$$\bar{t}_{\text{сист}} = \frac{\bar{r}}{\lambda} + \frac{q}{\mu}$$

б) M/M/1/ ∞ – одноканальная СМО с бесконечной очередью

$$P_0 = 1 - \rho$$

$$P_1 = \rho \cdot (1 - \rho)$$

$$P_2 = \rho^2 \cdot (1 - \rho)$$
......
$$P_k = \rho^k \cdot (1 - \rho)$$

$$P_{omk} = 0$$

$$q = 1, \quad A = q\lambda = \lambda$$

$$\bar{r} = \frac{\rho^2}{1 - \rho}$$

$$\bar{k} = \frac{\rho}{1 - \rho}$$

$$\bar{t}_{oxc} = \frac{1}{\mu} \cdot \frac{\rho}{1 - \rho} = \frac{\rho^2}{\lambda(1 - \rho)}$$

$$\bar{t}_{cucm} = \frac{1}{\mu} \cdot \frac{\rho}{1 - \rho}$$

в) M/M/n/ m – многоканальная СМО с ожиданием



в) M/M/n/ m – многоканальная СМО с ожиданием

Вероятность того, что система свободна

$$P_{0} = \left[1 + \rho + \frac{\rho^{2}}{2} + \dots + \frac{\rho^{n}}{n!} + \frac{\rho^{n}}{n!} \cdot \frac{\frac{\rho}{n} - \left(\frac{\rho}{n}\right)^{m+1}}{1 - \frac{\rho}{n}} \right]^{-1}$$

Вероятность отказа

$$\mathbf{P}_{\text{отк}} = \mathbf{P}_{\text{n+m}} = \frac{\rho^{n+m}}{n^m \cdot n!} \cdot \mathbf{P}_{\text{o}}$$

Относительная пропускная способность

$$q = 1 - P_{om\kappa} = 1 - \frac{\rho^{n+m}}{n^m \cdot n!} P_0$$

Абсолютная пропускная способность

$$A = \lambda \cdot q = \lambda \cdot \left(1 - \frac{\rho^{n+m}}{n^m \cdot n!} P_0\right)$$

в) M/M/n/ m – многоканальная СМО с ожиданием

Среднее число занятых каналов
$$\bar{z} = \frac{A}{\mu}$$

Среднее число заявок в очереди

$$\overline{r} = 1 \cdot P_{n+1} + 2 \cdot P_{n+2} + \dots + m \cdot P_{n+m} = \frac{\rho^{n+1}}{n \cdot n!} \cdot \left[1 + 2 \frac{\rho}{n} + 3 \left(\frac{\rho}{n} \right)^2 + \dots + m \cdot \left(\frac{\rho}{m} \right)^{m+1} \right] P_0 = \frac{\rho^{n+1}}{n!} \cdot \left[1 + 2 \frac{\rho}{n} + 3 \left(\frac{\rho}{n} \right)^2 + \dots + m \cdot \left(\frac{\rho}{m} \right)^{m+1} \right] P_0 = \frac{\rho^{n+1}}{n!} \cdot \left[1 + 2 \frac{\rho}{n} + 3 \left(\frac{\rho}{n} \right)^2 + \dots + m \cdot \left(\frac{\rho}{m} \right)^{m+1} \right] P_0 = \frac{\rho^{n+1}}{n!} \cdot \left[1 + 2 \frac{\rho}{n} + 3 \left(\frac{\rho}{n} \right)^2 + \dots + m \cdot \left(\frac{\rho}{m} \right)^{m+1} \right] P_0 = \frac{\rho^{n+1}}{n!} \cdot \left[1 + 2 \frac{\rho}{n} + 3 \left(\frac{\rho}{n} \right)^2 + \dots + m \cdot \left(\frac{\rho}{m} \right)^{m+1} \right] P_0 = \frac{\rho^{n+1}}{n!} \cdot \left[1 + 2 \frac{\rho}{n} + 3 \left(\frac{\rho}{n} \right)^2 + \dots + m \cdot \left(\frac{\rho}{m} \right)^{m+1} \right] P_0 = \frac{\rho^{n+1}}{n!} \cdot \left[1 + 2 \frac{\rho}{n} + 3 \left(\frac{\rho}{n} \right)^2 + \dots + m \cdot \left(\frac{\rho}{m} \right)^{m+1} \right] P_0 = \frac{\rho^{n+1}}{n!} \cdot \left[1 + 2 \frac{\rho}{n} + 3 \left(\frac{\rho}{n} \right)^2 + \dots + m \cdot \left(\frac{\rho}{m} \right)^{m+1} \right] P_0 = \frac{\rho^{n+1}}{n!} \cdot \left[1 + 2 \frac{\rho}{n} + 3 \left(\frac{\rho}{n} \right)^2 + \dots + m \cdot \left(\frac{\rho}{m} \right)^{m+1} \right] P_0 = \frac{\rho^{n+1}}{n!} \cdot \left[1 + 2 \frac{\rho}{n} + 3 \left(\frac{\rho}{n} \right)^2 + \dots + m \cdot \left(\frac{\rho}{m} \right)^{m+1} \right] P_0 = \frac{\rho^{n+1}}{n!} \cdot \left[1 + 2 \frac{\rho}{n} + 3 \left(\frac{\rho}{n} \right)^2 + \dots + m \cdot \left(\frac{\rho}{m} \right)^{m+1} \right] P_0 = \frac{\rho^{n+1}}{n!} \cdot \left[1 + 2 \frac{\rho}{n} + 3 \left(\frac{\rho}{n} \right)^2 + \dots + m \cdot \left(\frac{\rho}{m} \right)^{m+1} \right] P_0 = \frac{\rho^{n+1}}{n!} \cdot \left[1 + 2 \frac{\rho}{n} + 3 \left(\frac{\rho}{n} \right)^2 + \dots + m \cdot \left(\frac{\rho}{m} \right)^{m+1} \right] P_0 = \frac{\rho^{n+1}}{n!} \cdot \left[1 + 2 \frac{\rho}{n} + 3 \left(\frac{\rho}{n} \right)^2 + \dots + m \cdot \left(\frac{\rho}{m} \right)^{m+1} \right] P_0 = \frac{\rho^{n+1}}{n!} \cdot \left[1 + 2 \frac{\rho}{n} + 3 \left(\frac{\rho}{n} \right)^2 + \dots + m \cdot \left(\frac{\rho}{m} \right)^2 + \dots + m$$

$$=\frac{\rho^{n+1}}{n\cdot n!}\cdot\frac{1-(m+1)\left(\frac{\rho}{n}\right)+m\left(\frac{\rho}{n}\right)^{m+1}}{\left(1-\frac{\rho}{m}\right)^2}\cdot P_0$$
 Общее число заявок в системе $\bar{k}=\bar{z}+\bar{r}$

Время ожидания
$$\bar{t}_{osc} = \frac{\bar{r}}{\lambda}$$

Время пребывания в системе

$$\bar{t}_{cucm} = \bar{t}_{onc} + \frac{q}{\mu}$$

г) M/M/n/ ∞ – многоканальная СМО бесконечной очередью

$$P_0 = \left(1 + \rho + \frac{\rho^2}{2} + \dots + \frac{\rho^n}{n!} + \frac{\rho^{n+1}}{n!(n-\rho)}\right)$$

$$P_{\text{отк}} = 0$$
, $q=1$, $A = \lambda \cdot q = \lambda$

$$\overline{r} = \frac{\rho^{n+1}}{n \cdot n! \left(1 - \frac{\rho}{n}\right)^2} P_0 \qquad \overline{z} = \frac{A}{\mu} = \frac{\lambda}{\mu} = \rho$$

$$\bar{t}_{osc} = \frac{\bar{r}}{\lambda}$$
 $\bar{t}_{cucm} = \bar{t}_{osc} + \frac{q}{\mu}$