ДИСКРЕТНЫЕ СТРУКТУРЫ

ТЕОРИЯ МНОЖЕСТВ ОСНОВНЫЕ ПОНЯТИЯ

лекция 1

Математический факультет. Кафедра математического моделирования

Тема: Основные понятия теории множеств

Цель лекции — изучение основных понятий теории множеств, способов задания множеств, законов алгебры множеств

Содержание:

- Курс «Дискретная математика»: цель, структура
- Теория множеств как раздел дискретной математики
- Понятие множества
- Способы задания множеств
- Отношения принадлежности и включения
- Мощность множества. Пустое и универсальное множества
- Булеан и его мощность
- Операции над множествами
- Законы и тождества алгебры множеств Кантора

Литература

- **Горбатов В.А.** Основы дискретной математики. М.: Высш. шк., 1986. 4-8 с.
- Лавров И.А., Максимова Л.Л. Задачи по теории множеств, математической логике и теории алгоритмов. М.: Наука. Главная редакция физико-математической литературы, 1984. 4-10 с.
- **Кузнецов О.П., Адельсон-Вельский Г.М.** Дискретная математика для инженера. М.: Энергия, 1980. 344 с.
- **Богомолов А.М., Сперанский Д.В.** Аналитические методы в задачах контроля и анализа дискретных устройств. Саратов: Изд-во Саратовкого ун-та, 1986. 240с.
- **Новиков Ф.А.** Дискретная математика для программистов. С.-П., 2001. С. 4-24.
- Хаханов В.І., Хаханова І.В., Кулак Е.М., Чумаченко С.В. Методичні вказівки до практичних занять з курсу "Дискретна математика". Харків, ХНУРЕ. 2001. 87с.

Курс «Дискретная математика»: цель, структура

Цель курса –

формирование базовых знаний в области ДМ, необходимых для освоения методов анализа и синтеза аппаратных и программных средств цифровых вычислительных систем и сетей различного назначения, изучения теоретической базы информационных технологий, математических способов представления дискретных информационных процессов

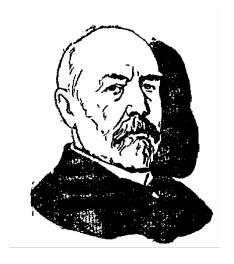


Курс «Дискретная математика»: знания, умения, навыки

Знания	математический аппарат дискретной математики – множества и отношения, операции над ними, графы и операции над ними, формальные правила представления, минимизации и реализации логических функций; комбинаторика в части применения основных формул, методов оптимальных решений и их оценки при рассмотрении типовых задач
Умения	формулировать и решать практические задачи разработки программного обеспечения автоматизированных систем, синтеза и анализа цифровых дискретных объектов на основе выбора наиболее рационального математического аппарата дискретной математики с целью ее оптимального решения
Навыки	вычисление теоретико-множественных операций, применение операций минимизации и поглощения, составление матриц для графов, правила минимизации булевых функций

Историческая справка

- Немецкий ученый, математик, создатель теории множеств
- Родился в Петербурге в 1845г.
- В 1867 г. окончил Берлинский университет
- В 1872-1913 гг. профессор университета в Галле
- Сформулировал общее понятие мощности множества (1878)
- Развил принципы сравнения мощностей множеств и
- Систематически изложил принципы своего учения
- Созданная Кантором теория множеств, некоторые идеи которой имелись у его предшественников, послужила причиной общего пересмотра логических основ математики и оказала влияние на всю современную ее структуру.



Георг Кантор (XIX-XXвв.)

Теория множеств как раздел дискретной математики

Сегодня мы знаем, что, логически говоря, возможно вывести почти всю современную математику из единого источника – теории множеств

Н. Бурбаки

Термины

Базовые понятия:

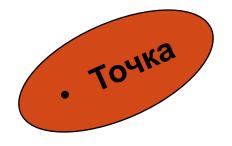
- множество
- элемент
- операции над множествами

Ключевые слова:

- множество
- элемент (объект) множества
- принадлежность
- подмножество
- включение
- мощность
- пустое множество
- универсум
- булеан
- объединение
- пересечение
- дополнение

Понятие множества

Множество есть многое, мыслимое как единое Г. Кантор



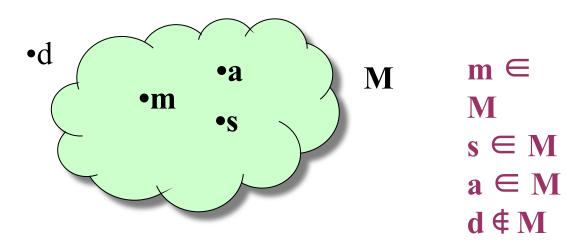
- Множество является первичным понятием
- Множество рассматривается как совокупность объектов той или иной природы
- Объекты, которые образуют множество, называются его элементами

Некоторые способы задания множеств

Способ	Пример
Перечисление элементов	$\{a,b,c\}, A=\{1,3,5,7\}$
Характеристическое свойство	$A=\{x\mid x=2k, k\in\mathbb{N}\};$
A ={a a, обладающие свойством Q }, M ={ $x \mid P(x)$ }	$M=\{x \mid \sin x = 1\}$
$VI = \{ X \mid I(X) \}$	
Порождающая процедура (операции над множествами)	$X=(A \cup B) \cap C$
Графически при помощи диаграмм Эйлера	B C X

Отношение принадлежности

- Отношение принадлежности устанавливает связь между множеством и его элементами
- Объект принадлежит множеству, если он является его элементом
- Принадлежность элемента х множеству X обозначается при помощи символа ∈: x ∈ X
- Пример

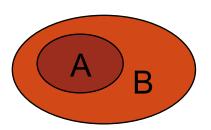


Отношение включения

 Устанавливает связь между двумя множествами:

$A \subseteq B \Leftrightarrow \forall m \in A \Rightarrow m \in B$

- Обозначение:
 - \subset строгое включение;
 - ⊆ нестрогое включение
- А подмножество множества В
- В надмножество множества А
- Множества равны, если они состоят из одних и тех же элементов



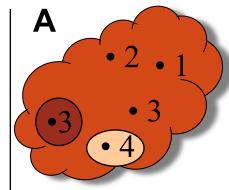
A ⊂ B

Отношения принадлежности и включения: пример

Дано множество $A = \{1, 2, 3, \{3\}, \{4\}\}.$

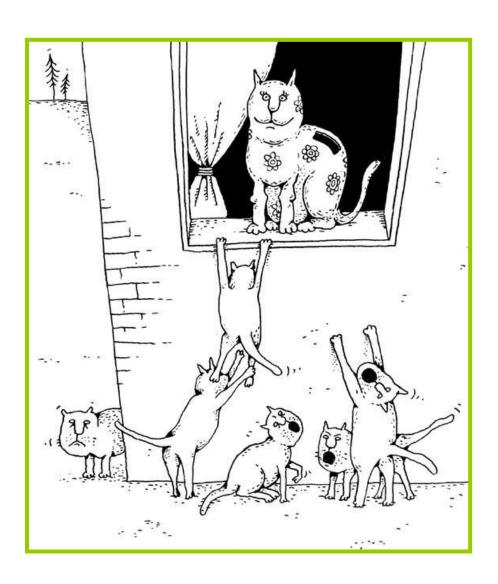
Какие из следующих утверждений верны?

- 2∈А верно, так как в множестве А есть элемент 2;
- {1,2}⊂A верно, так как в множестве A есть элементы
 1,2, т.е. 1∈A, 2∈A;
- 3∈А верно, так как в множестве А имеется элемент 3;
- {3}∈ A верно, поскольку в множестве A есть элемент {3};
- 4∈А неверно, так как в множестве А нет элемента 4;
- {4}∈A верно, так как в множестве А имеется элемент {4};
- {4}⊂A неверно, поскольку в множестве А нет элемента 4.



```
2€A
{1,2} ⊂ A
3€A
{3}€A
4∉A
{4}€A
{4}€A
```

Time Out



Мощность множества. Пустое и универсальное множества

- Мощность множества или кардинальное число определяет количество элементов данного множества
- Обозначения: |M|, card M
- Пустое множество Ø не содержит ни одного элемента:

$$|\varnothing|=0$$

• Универсальное множество U — надмножество всех множеств:

$$\varnothing \subseteq M \subseteq U$$

Булеан. Мощность булеана

Булеан – множество всех подмножеств данного множества М

- Обозначение: В(М)
- Пример: дано множество A={a,b,c}. Найти B(A).

B(A)={
$$\varnothing$$
, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}}

- lacktriangle Мощность булеана определяется по формуле: $|\mathbf{B}(\mathbf{M})| = 2^{|\mathbf{M}|}$
- Пустое множество и само множество являются несобственными подмножествами множества М

• Остальные подмножества – собственные

Операции над множествами

Название операции	Определение	Диаграммы Эйлера
Пересечение	A∩B={ x x∈A и x∈B }	A B
Объединение	A∪B={ x x∈A или x∈B }	A B
Разность	A\B={ x x∈A и x∉B } _	AB
Дополнение	A=U\A={ x x∈U и x∉A }	A (A)
Симметрическая разность	A∆B=(A\B) U (B\A)	AB

Законы и тождества алгебры множеств Кантора. 1

Название	Формула
Коммутативность	$A \cup B = B \cup A, A \cap B = B \cap A$
Ассоциативность	$(A \cup B) \cup C = A \cup (B \cup C),$
	$(\mathbf{A} \cap \mathbf{B}) \cap \mathbf{C} = \mathbf{A} \cap (\mathbf{B} \cap \mathbf{C})$
Дистрибутивность	$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
	$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
Идемпотентность	$A \cap A = A$, $A \cup A = A$
Действия с константами	$A \cup \varnothing = A, A \cap \varnothing = \varnothing, A \cup U = U, A \cap U = A$
Закон противоречия	$\mathbf{A} \cap \mathbf{A} = \emptyset$
Закон исключенного третьего	$A \cup A = U$
Инволюция	$\overline{\mathbf{A}} = \mathbf{A}$

Законы и тождества алгебры множеств Кантора. 2

Название	Формула
Закон де Моргана	$\overline{A \cup B} = A \cap B, \overline{A \cap B} = A \cup B$
Элиминация	$(A \cup B) \cap A = A, (A \cap B) \cup A = A$
Склеивание	$(A \cup B) \cap (A \cup B) = \overline{A}, (A \cap B) \cup (A \cap B) = \overline{A}$
Законы Блэйка-Порецкого	$A \cap (A \cup B) = A \cap B, A \cup (A \cap B) = A \cup B$ $A \cap (A \cup B) = A \cap B, A \cup B$
	$(\mathbf{A} \cap \mathbf{B}) = \mathbf{A} \cup \mathbf{B}$
Формулы для определения	$ \mathbf{A} \cup \mathbf{B} = \mathbf{A} + \mathbf{B} - \mathbf{A} \cap \mathbf{B} ,$
мощности	$ \mathbf{A} \cap \mathbf{B} = \mathbf{A} + \mathbf{B} - \mathbf{A} \cup \mathbf{B} $

Алгебра множеств Кантора. Выводы

- Алгебра совокупность носителя и сигнатуры
- Обозначение: A=<N, S>
- Замкнутость
 относительно операций
- Алгебра множеств
 Кантора:
 носитель множес

носитель – множества,

сигнатура – набор

операций

Обозначение: $A_k = \langle N_k, S_k \rangle$

Тест-вопросы

- 1. Могут ли повторяться элементы множества? а) да; б) нет
- 2. Является ли множество несобственным подмножеством самого себя? а) да; б) нет
- **3.** Множества равны, если они содержат
- а) одни и те же элементы;
- б) одинаковое количество элементов.

- **4.** Являются ли понятия мощность и кардинальное число идентичными?
- а) да; б) нет.
- **5.** Определить мощность булеана множества F={a, {d, c} }:
- a) |B(F)|= 2;
 - б) |B(F)| = 4;
 - в) |B(F)|=0;
 - r) |B(F)| = 3.