Пособие Прокофьева А.А. и Корянова А.Г. по заданию 14 издательства Легион

EI9

Оглавление	А.А. Прокофьев, А.Г. Корянов
Глава 1. Расстояния и углы 6	
Расстояние: (1) между двумя точками;	МАТЕМАТИКА
(2) от точки до прямой;	Подготовка к ЕГЭ
(3) от точки до плоскости;	Многогранники: типы задач и методы их решения.
(4) между скрещивающимися прямыми.	Задание 16
Угол между: (1) двумя прямыми; (2) между прямой и плоскостью;	легион Ученно-методический комплекс «математика, подготовка к егз»
(3) между плоскостями.	
Глава 2. Площади и объёмы	
(3) объём многогранника.	
Глава 3. Дополнения	

Об учебниках по геометрии и теоремах в них

Геометрия. 10 кл.: учеб. для общеобразоват. учреждений с углубл. и профильным изучением математики / Е. В. Потоскуев, Л. И. Звавич.

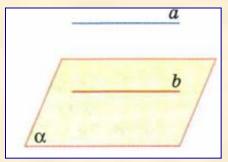
Геометрия. 10—11 классы: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.].

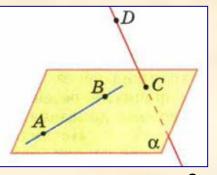
Признаки параллельных и скрещивающихся прямых, параллельности прямой и плоскости

Теорема 7 (признак параллельности прямых). Если две прямые параллельны третьей прямой, то они параллельны.

Теорема 9 (признак параллельности прямой и плоскости). Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то эти прямая и плоскость параллельны.

Теорема 4 (признак скрещивающихся прямых). Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещиваются.





Теоремы существования и единственности

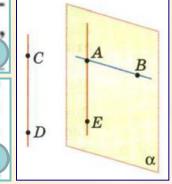
Теорема 6. Через точку пространства, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну.

Теорема

Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

Теорема

Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.



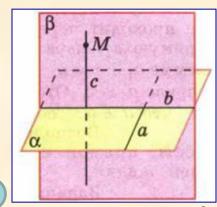
Задача

Докажите, что существует, и притом только одна, прямая, пересекающая две данные скрещивающиеся прямые *a* и *b* и перпендикулярная к каждой из них.

Теорема 23. Через точку, не лежащую в данной плоскости, можно провести плоскость, параллельную данной, и притом только одну.

Теорема

Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.

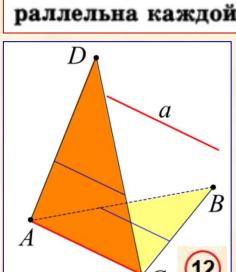


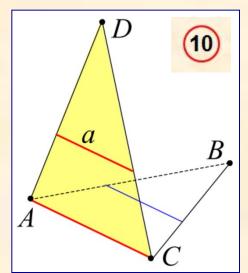
Параллельные прямые

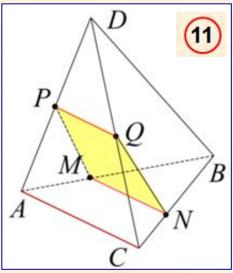
Теорема 5. Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

Теорема 10. Если плоскость проходит через прямую, параллельную другой плоскости, и пересекает эту плоскость, то прямая пересечения этих плоскостей параллельна данной прямой.

Теорема 11. Если через каждую из двух параллельных прямых проведена плоскость, причем эти плоскости пересекаются, то прямая их пересечения параллельна каждой из данных прямых.







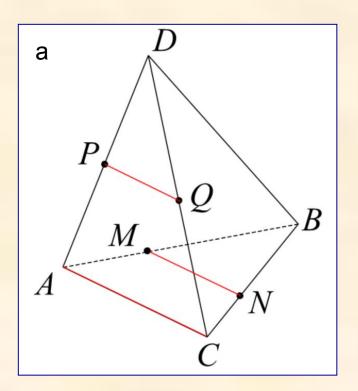
Теорема 12. Если прямая параллельна каждой из двух пересекающихся плоскостей, то она параллельна их линии пересечения.

Задание 14

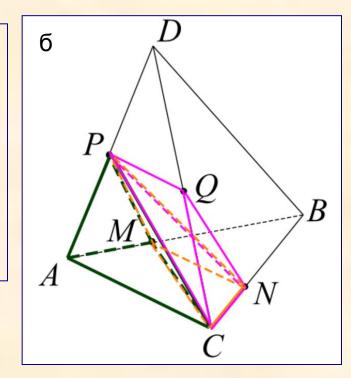
14

На рёбрах AB и BC треугольной пирамиды ABCD отмечены точки M и N, так что AM : MB = CN : NB = 1 : 2. Точки P и Q середины рёбер DA и DC соответственно.

- а) Докажите, что точки P, Q, M и N лежат в одной плоскости.
- б) Найдите отношение объёмов многогранников, на которые плоскость PQM разбивает пирамиду.



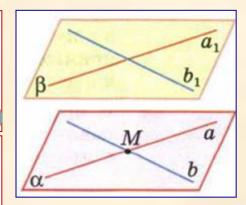
Разбиваем
APMQNC
на три
треугольных
пирамиды
CAPM, PCQN и
PCMN.

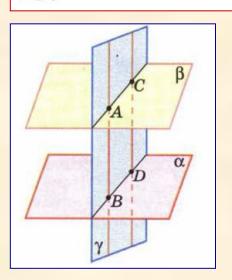


Признак параллельности плоскостей и свойства параллельных плоскостей

Теорема 18 (признак параллельности плоскостей). Если каждая из двух пересекающихся прямых одной плоскости параллельна другой плоскости, то данные плоскости параллельны.

Теорема 19. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.





Теорема 20. Прямые, по которым две параллельные плоскости пересечены третьей плоскостью, параллельны.

Теорема 25. Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны

Теорема 24. Две плоскости, параллельные третьей, параллельны.

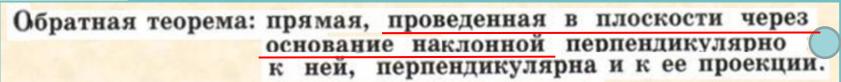
Теорема о трех перпендикулярах

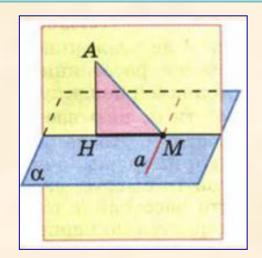
Теорема 16 (теорема о трех перпендикулярах). Если прямая, лежащая на плоскости, перпендикулярна проекции наклонной на эту плоскость, то данная прямая перпендикулярна и самой наклонной.

Теорема 17. Если на плоскости проведена прямая перпендикулярно наклонной, то эта прямая перпендикулярна проекции наклонной.

Теорема

Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной.





Демовариант. Решение задания 14

14

Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ имеют длину 6. Точки M и N— середины рёбер AA_1 и A_1C_1 соответственно.

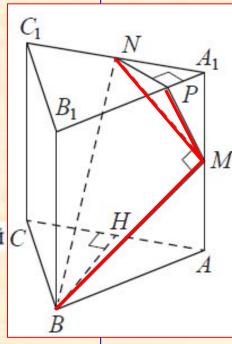
- а) Докажите, что прямые BM и MN перпендикулярны.
- б) Найдите угол между плоскостями BMN и ABB_1 .
- а) Пусть точка H середина AC. Тогда $BN^2 = BH^2 + NH^2 = \left(3\sqrt{3}\right)^2 + 6^2 = 63$. Вместе с тем. $BM^2 + MN^2 = \left(3^2 + 6^2\right) + \left(3^2 + 3^2\right) = 63$.
- а тогда по теореме, обратной теореме Пифагора, треугольник BMN является прямоугольным с прямым углом M .
- б) Проведём перпендикуляр NP к прямой A_1B_1 . Тогда $NP \perp A_1B_1$ и $NP \perp A_1A$. Следовательно, $NP \perp ABB_1$. Поэтому MP проекция MN на плоскость ABB_1 .

Прямая BM перпендикулярна MN, тогда по теореме о трёх перпендикулярах $BM \perp MP$. Следовательно, угол NMP — линейный C угол искомого угла.

Длина NP равна половине высоты треугольника $A_1B_1C_1$,

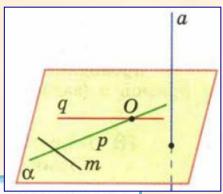
TO eCTL
$$NP = \frac{3\sqrt{3}}{2}$$
.

Поэтому $\sin \angle NMP = \frac{NP}{MN} = \frac{3\sqrt{3}}{2 \cdot 3\sqrt{2}} = \frac{\sqrt{3}}{\sqrt{8}}$. Следовательно, $\angle NMP = \arcsin\sqrt{\frac{3}{8}}$.



Перпендикулярность прямой и плоскости

Теорема 13 (признак перпендикулярности прямой и плоскости). **Если прямая перпендикулярна каждой из** двух пересекающихся прямых, лежащих в плоскости, то она перпендикулярна этой плоскости.



Теорема

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Теорема 26. Если прямая перпендикулярна одной из двух параллельных плоскостей, то она перпендикулярна и другой плоскости.

Теорема 14. Если одна из двух параллельных прямых перпендикулярна плоскости, то и другая прямая перпендикулярна этой плоскости.

Теорема 15. Если две прямые перпендикулярны плоскости, то они параллельны.

Лемма

Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

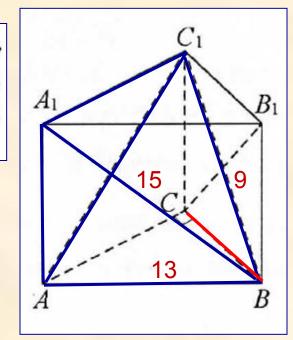
ЕГЭ 2017 (основной экзамен)

14

Основанием прямой треугольной призмы $ABCA_1B_1C_1$ является прямоугольный треугольник ABC с прямым углом C. Диагонали боковых граней AA_1B_1B и BB_1C_1C равны 15 и 9 соответственно, AB = 13.

- а) Докажите, что треугольник BA_1C_1 прямоугольный.
- б) Найдите объём пирамиды AA_1C_1B .

а) Прямая A_1C_1 перпендикулярна плоскости BB_1C_1 , поскольку она перпендикулярна прямым C_1B_1 и CC_1 . Значит, прямые A_1C_1 и BC_1 перпендикулярны.



Ответ: б) 20√14.

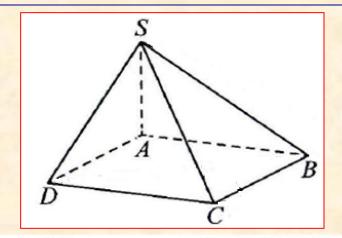
Решение задания 14

14

EF3 2015

В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=8 и BC=15. Длины боковых рёбер пирамиды $SA=\sqrt{111}$, $SB=5\sqrt{7}$, $SD=4\sqrt{21}$.

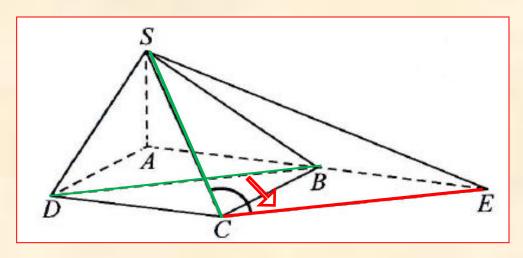
- а) Докажите, что SA высота пирамиды.
- б) Найдите угол между прямыми SC и BD.
- а) В треугольнике SAB имеем: $SB^2 = 175 = 111 + 64 = SA^2 + AB^2$, поэтому треугольник SAB прямоугольный с гипотенузой SB и прямым углом SAB. Аналогично, из равенства $SD^2 = 336 = 111 + 225 = SA^2 + AD^2$



получаем, что $\angle SAD = 90^{\circ}$. Так как прямая SA перпендикулярна прямым AB и AD, прямая SA перпендикулярна плоскости ABD.

Решение задания 14

14



б) На прямой AB отметим такую точку E, что BDCE — параллелограмм, тогда BE = DC = AB и DB = CE. Найдём угол SCE. По теореме Пифагора:

$$AC = BD = \sqrt{AB^2 + AD^2} = 17$$
; $SC = \sqrt{SA^2 + AC^2} = 20$ и $SE^2 = SA^2 + AE^2 = 367$.

По теореме косинусов:

$$SE^2 = SC^2 + CE^2 - 2SC \cdot CE \cdot \cos \angle SCE$$
; $367 = 400 + 289 - 680 \cos \angle SCE$; $\cos \angle SCE = \frac{161}{340}$.

Искомый угол равен $\frac{161}{340}$

Ответ: б) $\arccos \frac{161}{340}$.

Перпендикулярность двух плоскостей

Теорема 28 (признак перпендикулярности двух плоскостей). Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостой (рис. 63)

стей (рис. 63).

Теорема 29. Если прямая лежит в одной из двух взаимно перпендикулярных плоскостей и перпендикулярна линии их пересечения, то эта прямая перпендикулярна другой плоскости.

Теорема 30. Если прямая, проведенная через точку одной из двух взаимно перпендикулярных плоскостей, перпендикулярна другой плоскости, то она лежит в первой из них.

Теорема 31. Если две плоскости, перпендикулярные третьей плоскости, пересекаются, то прямая их пересечения перпендикулярна третьей плоскости.

Рис. 63

ЕГЭ 2017 (основной экзамен)

Основанием четырёхугольной пирамиды PABCD является трапеция ABCD, причём $\angle BAD + \angle ADC = 90^{\circ}$. Плоскости PAB и PCD перпендикулярны плоскости основания, K — точка пересечения прямых AB и CD.

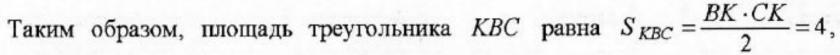
- а) Докажите, что плоскости PAB и PCD перпендикулярны.
- б) Найдите объём пирамиды KBCP, если AB = BC = CD = 4, а высота пирамиды PABCD равна 9.
- а) Заметим, что ∠AKD = 90°. Плоскости PAB и PCD перпендикулярны плоскости основания, поэтому они пересекаются по прямой, содержащей высоту пирамиды. Значит, PK высота пирамиды. Таким образом, угол ∠AKD является линейным углом двугранного угла между плоскостями PAB и PCD. Значит, они перпендикулярны.

14

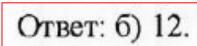
б) Поскольку AB = CD, трапеция ABCD является равнобедренной. Значит,

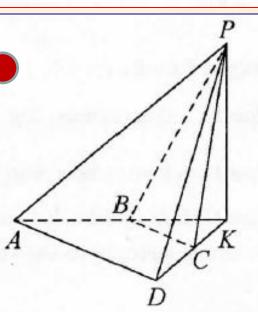
$$\angle BAD = \angle ADC = \angle KBC = \angle KCB = 45^{\circ};$$

 $BK = CK = \frac{\sqrt{2}}{2}BC = 2\sqrt{2}.$



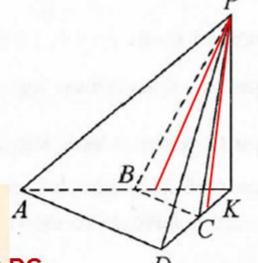
а объём пирамиды *КВСР* равен
$$\frac{PK \cdot S_{KBC}}{3} = 12$$
.





ЕГЭ 2017 (основной экзамен)

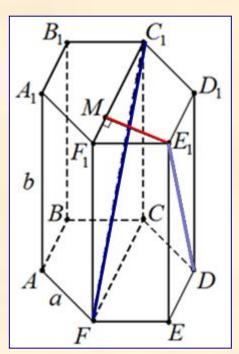
а) Заметим, что ∠AKD = 90°. Плоскости PAB и PCD перпендикулярны плоскости основания, ноэтому они пересекаются по прямой, содержащей высоту пирамиды. Значит, PK — высота пирамиды. Таким образом, угол ∠AKD является линейным углом двугранного угла между плоскостями PAB и PCD. Значит, они перпендикулярны.



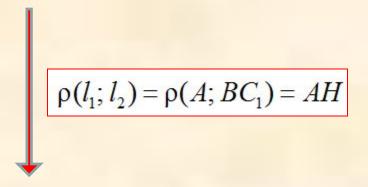
0

Из точки Р опускаем перпендикуляры на АВ и DC. *D* Они являются перпендикулярами к плоскости, опущенными из одной точки. Следовательно, должны совпадать, то есть совпадать с PK.

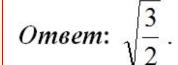
Расстояние между скрещивающимися прямыми

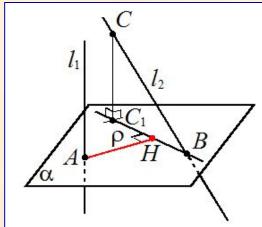


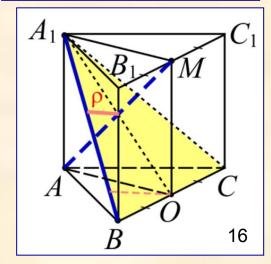
- 1. Метод построения общего перпендикуляра.
- 2. Метод параллельных прямой и плоскости.
- 3. Метод параллельных плоскостей.
- 4. Метод ортогонального проектирования.



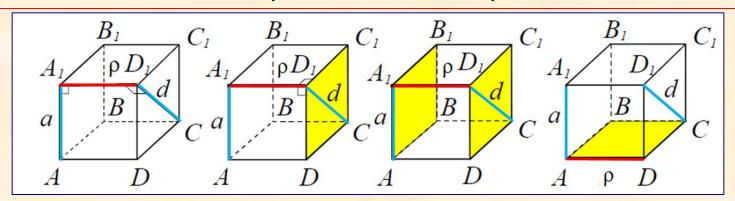
Задача (МИОО, 2013). Дана правильная треугольная призма $ABCA_1B_1C_1$, все ребра основания которой равны $2\sqrt{7}$. Сечение, проходящее через боковое ребро AA_1 и середину M ребра B_1C_1 , является квадратом. Найдите расстояние между прямыми A_1B и AM.







Задача. В кубе, длина ребра которого равна, найти расстояние между ребром и диагональю не пересекающей его грани.

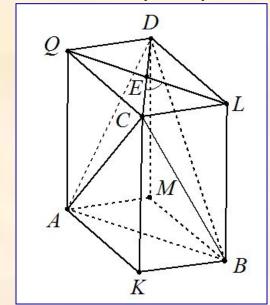


5. Метод, основанный на применении формулы объема тетраэдра, в

котором известны длины двух скрещивающихся ребер, угол и расстояние между ними.

Если V — объем пирамиды ABCD, в которой AB = a, CD = b — скрещивающиеся ребра, d — расстояние, а ϕ — угол между ними, то справедлива следующая формула

$$d = \frac{6V}{ab\sin\varphi}.$$



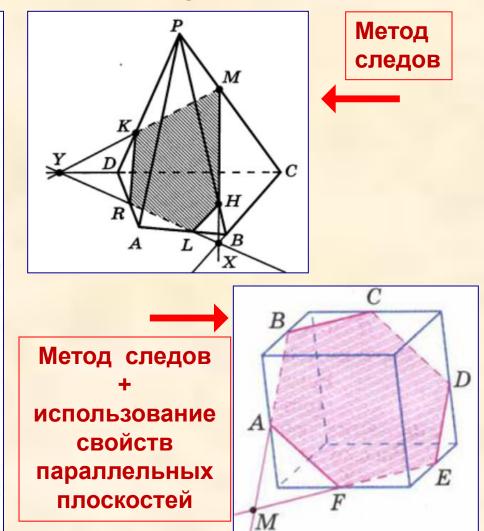
Прокофьев А.А., Бардушкин В.В. О различных подходах к вычислению расстояния между скрещивающимися прямыми. // «Математика в школе», – М.: «Школьная пресса», – 2015. – № 5. – С. 18-32.

Построения сечений, достаточность обоснования и строгость оценивания экспертами

Следом плоскости а на плоскости в называют прямую, по которой плоскости а и в пересекаются. Соответственно, след секущей плоскости на грани многогранника – это отрезок, все точки которого являются общими точками секущей плоскости и грани.

Следом прямой l на плоскости а называют точку, в которой прямая l пересекает плоскость а. Соответственно, след секущей плоскости на ребре многогранника — это общая точка секущей плоскости и ребра.

Построить сечение многогранника плоскостью означает построить многоугольник, все рёбра которого — следы секущей плоскости на гранях многогранника, а его вершины — следы секущей плоскости на рёбрах многогранника.



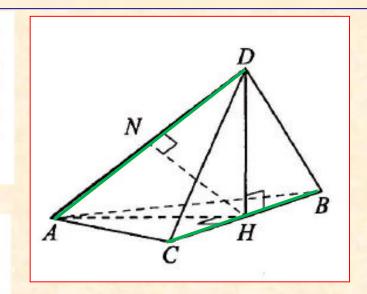
Прокофьев А.А., Бардушкин В.В. О различных подходах к вычислению площадей сечений. // «Математика в школе», – М.: «Школьная пресса», – 2014. – № 10. – С. 7-15, 2015. – № 1. – С. 13-21.

Пример задания 14

14

В тетраэдре ABCD ребро AD имеет длину 4, а все остальные рёбра равны 5.

- а) Докажите, что прямые AD и BC перпендикулярны.
- б) Найдите площадь сечения тетраэдра плоскостью, содержащей прямую AD и перпендикулярной прямой BC.
- а) Пусть H середина ребра BC, тогда медианы AH и DH равнобедренных треугольников BAC и BDC соответственно перпендикулярны BC. Значит, плоскость AHD перпендикулярна прямой BC, поэтому прямые AD и BC перпендикулярны.
- б) Треугольник *АНD* является сечением тетраэдра плоскостью, содержащей прямую *AD* и перпендикулярной прямой *BC*.



Из равных равнобедренных треугольников BAC и BDC находим:

$$DH = AH = \sqrt{AC^2 - CH^2} = \frac{5\sqrt{3}}{2}$$
.

В равнобедренном треугольнике AHD высота HN, проведённая к основанию,

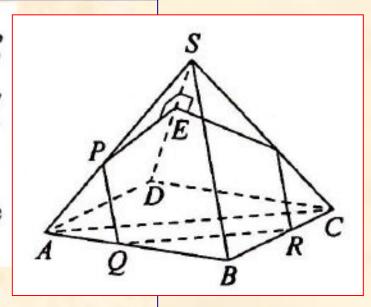
равна
$$\sqrt{AH^2 - \frac{AD}{4}^2} = \frac{\sqrt{59}}{2}$$
, значит, площадь треугольника *АНD* равна $\sqrt{59}$. Ответ: 6) $\sqrt{59}$.

19

В правильной четырёхугольной пирамиде SABCD все рёбра равны 5. На рёбрах SA, AB, BC взяты точки P, Q, R соответственно так, что PA = AQ = RC = 2.

- а) Докажите, что плоскость PQR перпендикулярна ребру SD.
- б) Найдите расстояние от вершины D до плоскости PQR.

а) Стороны треугольника SBD равны 5, 5 и $5\sqrt{2}$, поэтому он прямоугольный, то есть прямая DS перпендикулярна прямой SB. Поскольку прямые SB и PQ параллельны, прямая DS перпендикулярна прямой РО. Прямая АС перпендикулярна прямой BD, и по теореме перпендикулярах прямая Tpëx AC перпендикулярна прямой SD, а значит, и прямая QR перпендикулярна прямой SD. Таким образом, плоскость PQR перпендикулярна ребру SD.

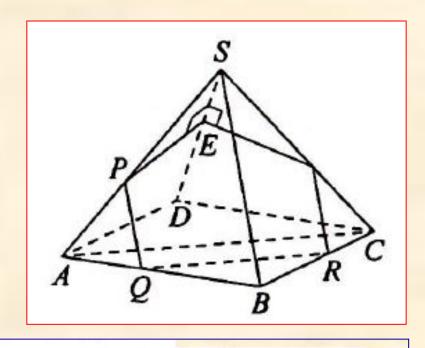


20

Решение задания 14

14 б

Построение сечения в этой задаче не является необходимым элементом решение задачи.



б) Пусть плоскость PQR пересекает ребро SD в точке E. Из доказанного следует, что прямая PE перпендикулярна прямой SD, откуда $SE = SP\cos 60^{\circ} = \frac{3}{2}$

Значит, $DE = SD - SE = \frac{7}{2}$.

Поскольку плоскость PQR перпендикулярна ребру SD, искомое расстояние

равно DE.

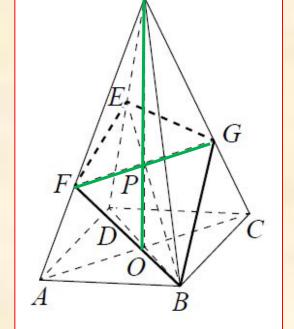
Ответ: б) $\frac{7}{2}$.

EF9 2013

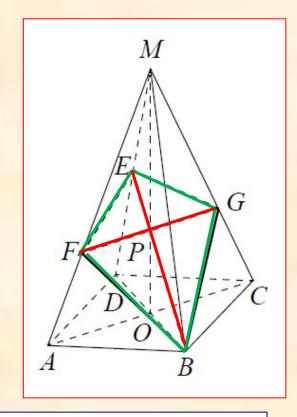
В правильной четырёхугольной пирамиде MABCD с вершиной M стороны основания равны 3, а боковые рёбра равны 8. Найдите площадь сечения пирамиды плоскостью, проходящей через точку B и середину ребра MD параллельно прямой AC.

Пусть точка E — середина ребра MD. Отрезок BE пересекает плоскость MAC в точке P. В треугольнике MBD точка P является точкой пересечения медиан, следовательно, MP:PO=2:1, где O — центр основания пирамиды. Отрезок FG параллелен AC и проходит через точку P (точка F принадлежит ребру MA, G — ребру MC), откуда MF:FA=MG:GC=MP:PO=2:1;

 $FG = \frac{2}{3}AC = \frac{2\sqrt{2} \cdot AB}{3} = 2\sqrt{2}$.



Решение задания 14



Четырёхугольник BFEG — искомое сечение. Отрезок BE — медиана треугольника MBD, значит,

$$BE = \frac{\sqrt{2BD^2 + 2MB^2 - MD^2}}{2} = \frac{\sqrt{4AB^2 + MB^2}}{2} = 5.$$

Поскольку прямая BD перпендикулярна плоскости MAC, диагонали BE и FG четырёхугольника BFEG перпендикулярны, следовательно, $RE \cdot FG$

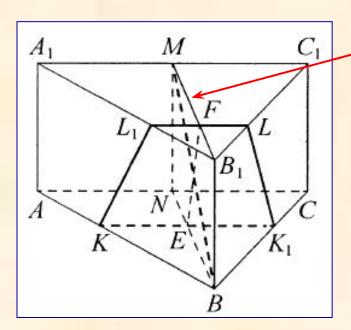
$$S_{BFEG} = \frac{BE \cdot FG}{2} = 5\sqrt{2} .$$

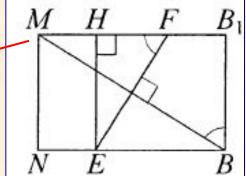
Otbet: $5\sqrt{2}$.

В правильной треугольной призме $ABCA_1B_1C_1$ сторона AB основания равна 6, а боковое ребро AA_1 равно 3. На рёбрах AB и B_1C_1 отмечены точки K и L соответственно, причём $AK = B_1L = 2$. Точка M — середина ребра A_1C_1 . Плоскость γ параллельна прямой AC и содержит точки K и L.

- а) Докажите, что прямая BM перпендикулярна плоскости γ .
- б) Найдите объём пирамиды, вершина которой точка M, а основание сечение данной призмы плоскостью γ .

Выносной чертеж





Проблема пункта *a*). Плохое владение теорией (признаки перпендикулярности прямой и плоскости, теорема о трех перпендикулярах и т. д.).

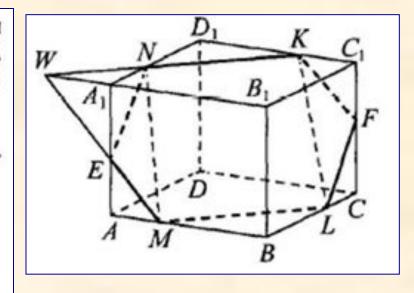
ЕГЭ 2016 (досрочный)

- В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания AB равна 6, а боковое ребро AA_1 равно $4\sqrt{3}$. На рёбрах AB, A_1D_1 и C_1D_1 отмечены точки M, N и K соответственно, причём $AM = A_1N = C_1K = 1$.
- а) Пусть L точка пересечения плоскости MNK с ребром BC. Докажите, что MNKL квадрат.
- б) Найдите площадь сечения призмы плоскостью MNK.
- а) Плоскость MNK пересекает плоскости оснований ABCD и $A_1B_1C_1D_1$ по параллельным прямым, значит, прямые NK и ML параллельны и CL=1.

Вычислим стороны и диагонали четырёхугольника MNKL:

$$NK = ML = \sqrt{MB^2 + BL^2} = 5\sqrt{2},$$

$$LK = MN = \sqrt{MA^2 + AA_1^2 + A_1N^2} = 5\sqrt{2},$$



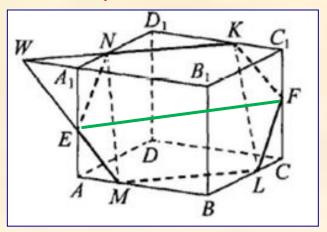
$$MK = \sqrt{(MB - KC_1)^2 + BC^2 + CC_1^2} = \sqrt{(BL - NA_1)^2 + AB^2 + AA_1^2} = LN$$
. Поэтому $MNKL$ — квадрат.

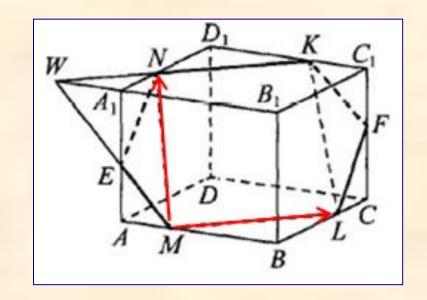
14

ЕГЭ 2016 (досрочный)

Пункт а) можно решить с использованием координатного методам.

Многие участники экзамена считали, что квадрат MNKL – сечение!





б) Пусть W — точка пересечения прямых NK и A_1B_1 . Тогда $WA_1 = NA_1 = MA$, поэтому прямая WM, а значит и плоскость MNK, пересекает ребро AA_1 в его середине E. Аналогично, плоскость MNK пересекает ребро CC_1 в его середине F.

В прямоугольнике AEFC имеем $EF = AC = 6\sqrt{2}$. Сечение MENKFL состоит из двух равных трапеций ENKF и EMLF, причём прямая MN перпендикулярна их основаниям. Значит, искомая площадь равна

$$2 \cdot \frac{ML + EF}{2} \cdot \frac{MN}{2} = 55$$

Применение теоремы о площади ортогональной проекции

Теорема 32. Площадь ортогональной проекции многоугольника на плоскость равна площади проектируемого многоугольника, умноженной на косинус угла между плоскостью многоугольника и плоскостью проекций.

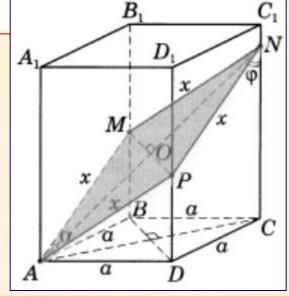
$$S(\Phi_1) = S(\Phi) \cdot \cos \varphi,$$

где ϕ — угол между плоскостью n-угольника Φ плоскостью

проекций.

Пример 7. Плоскость пересекает прямоугольный параллелепипед с квадратным основанием по ромбу с острым углом с. Под каким углом эта плоскость пересекает боковые ребра параллелепипеда?

Other:
$$\arcsin\left(tg\frac{\alpha}{2}\right)$$
.



Бардушкин В.В., Белов А.И., Ланцева И.А., Прокофьев А.А., Фадеичева Т.П. Применение теоремы о площади ортогональной проекции многоугольника при решении стереометрических задач // «Математика для школьников», – М.: «Школьная пресса», – 2010, № 3, С. 26-34, № 4, С. 13-21.

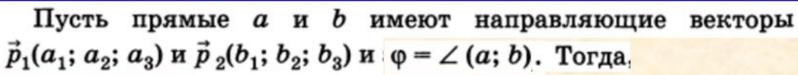
Координатный метод

Пусть даны две точки $A(x_1;\,y_1;\,z_1)$ и $B(x_2;\,y_2;\,z_2)$. Тогда

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

Для решения многих задач с применением векторов полезны следующие (кажущиеся, на первый взгляд, формальными) формулы: $\vec{a} \cdot \vec{b}$

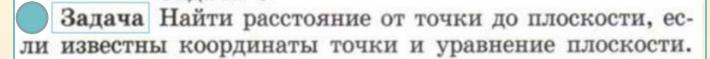
$$|\vec{a}| = \sqrt{(\vec{a})^2}; \cos(\widehat{\vec{a};\vec{b}}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}.$$



$$\cos \varphi = \frac{|a_1b_1 + a_2b_2 + a_3b_3|}{\sqrt{a_1^2 + a_2^2 + a_3^2} \cdot \sqrt{b_1^2 + b_2^2 + b_3^2}}.$$

Если точка M_0 лежит на плоскости, то $Ax_0 + By_0 + Cz_0 + D = 0$ и искомое расстояние равно нулю, что также следует из полученной формулы $Ax_0 + By_0 + Cz_0 + D$

 $d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$



Координатный метод

Угол между двумя плоскостями α и β , заданными уравнениями соответственно $A_1x+B_1y+C_1z+D_1=0$ и $A_2x+B_2y+C_1z+D_2=0$, связан с углом между векторами их нормалей $\vec{n}_1(A_1;B_1;C_1)$ и $\vec{n}_2(A_2;B_2;C_2)$. Именно,

$$\cos \angle (\alpha; \beta) = |\cos \angle (\vec{n}_1; \vec{n}_2)| = \frac{|A_1 A_2 + B_1 B_2 + C_1 C_2|}{\sqrt{A_1^2 + B_1^2 + C_1^2} \cdot \sqrt{A_2^2 + B_2^2 + C_2^2}}.$$

В частности, равенство $A_1 \cdot A_2 + B_1 \cdot B_2 + C_1 \cdot C_2 = 0$ выражает необходимое и достаточное условие перпендикулярности плоскостей α и β .

Угол между прямой и плоскостью можно найти, используя угол между направляющим вектором $\vec{p}(a;b;c)$ прямой l и вектором $\vec{n}(A;B;C)$ нормали к плоскости α :

$$\sin \angle (l; \alpha) = |\cos \angle (\vec{p}; \vec{n})| = \frac{|aA + bB + cC|}{\sqrt{a^2 + b^2 + c^2} \cdot \sqrt{A^2 + B^2 + C^2}}.$$

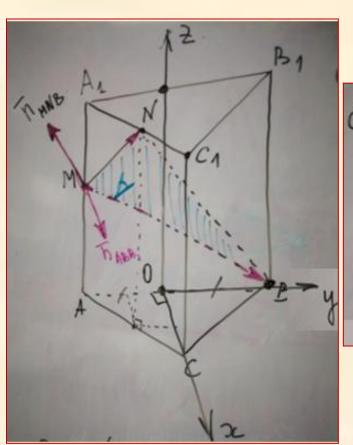
Бардушкин В.В., Корянов А.Г., Прокофьев А.А. Методы решения задач по теме «Двугранный угол. Угол между плоскостями». // «Математика для школьников», – М.: «Школьная пресса», – 2011. – №1. – С. 10-16.

О применении формул аналитической геометрии

Уравнение плоскости, проходящей через три точки $M_1(x_1, y_1, z_1), M_2(x_2, y_2, z_2), M_3(x_3, y_3, z_3)$

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$

Координатный метод (решение задания 14 из демонстрационного варианта)



a).
$$M(0;-3;3)$$
 $\overrightarrow{MB} = \{0,6,-3\}$
 $N(3\sqrt{3};-\frac{3}{2};6)$ $\overrightarrow{MN} = \{3\sqrt{3};\frac{3}{2};\frac{3}{2},3\}$.
 $B(0;3;0)$
 $A(0;-3;0)$. $\overrightarrow{MB} \cdot \overrightarrow{MN} = 0.3\sqrt{3}+6.\frac{3}{2}+6.\frac{3}{2}+(-3).3=0$
 $\overrightarrow{MB} \perp \overrightarrow{MN}$

Бардушкин В.В., Прокофьев А.А. Обобщающее повторение темы «Решение заданий С2 координатно-векторным способом». // «Математика в школе», – М.: «Школьная пресса», – 2012, № 10, С. 9-15.