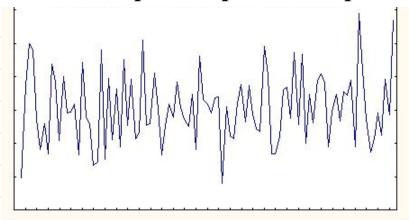
#### Временные ряды

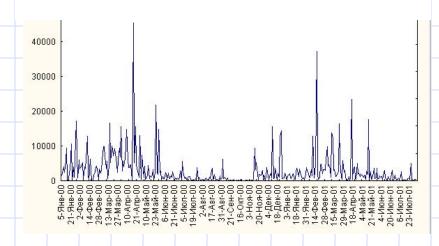
### Эконометрическую модель можно построить, используя два типа исходных данных:

- анные, характеризующие совокупность различных объектов в определенный момент (период) времени;
- данные, характеризующие один объект за ряд последовательных моментов (периодов) времени.

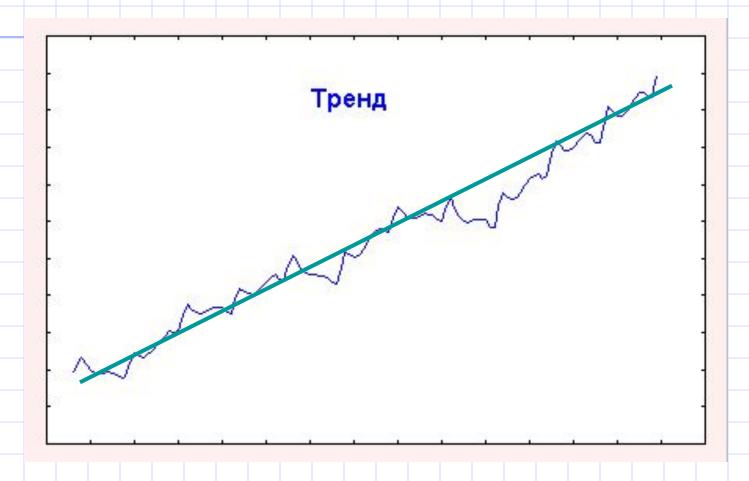
Модели, построенные по данным первого типа, называются *пространственными моделями*. Модели, построенные по данным второго типа, называются моделями временных рядов.


**Временной ряд (динамический ряд, ряд динамики)** – это совокупность значений какого-либо показателя за несколько последовательных моментов (периодов) времени.

|            | 2000 г. | 2001 г. | 2002 г. | 2003 г. | 2004 г. |
|------------|---------|---------|---------|---------|---------|
| ВВП, млрд. | 7305,6  | 8943,6  | 10834,2 | 13285,2 | 17048,1 |
| руб.       |         |         |         |         |         |


#### Виды временных рядов

- Стационарные
- Нестационарные
  - Содержащие тренд
  - □ Содержащие сезонную составляющую


#### Стационарный временной ряд



#### Нестационарный временной ряд



#### Временной ряд с трендом




Отражает устойчивые средние изменения показателя

## Временной ряд с сезонной компонентой



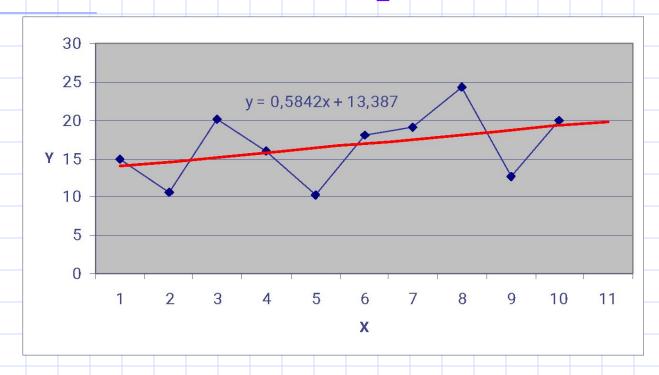
Отражает колебания показателя с определенным периодом

#### Три составляющие временного ряда



#### Модели временного ряда:

1) аддитивная 
$$Y_t = T_t + S_t + E_t$$


2) мультипликативная 
$$\mathbf{Y}_{\mathsf{t}} = T_{t} imes S_{t} imes E_{t}$$

3) смешанная 
$$Y_t = T_t \times S_t + E_t$$

## Основная задача эконометрического исследования временного ряда:

выявление и количественное выражение его компонент (тенденции, периодичности, случайной компоненты) в целях их использования для прогнозирования будущих значений ряда.

#### Определение тенденции: <u>метод</u> <u>аналитического выравнивания</u>



Тенденцию (тренд) определяет линия, проходящая максимально близко к точкам временного ряда

#### Типовые функции трендов

$$y(x) = a * x + b$$

• Степенная

$$y(x) = a * x^b$$

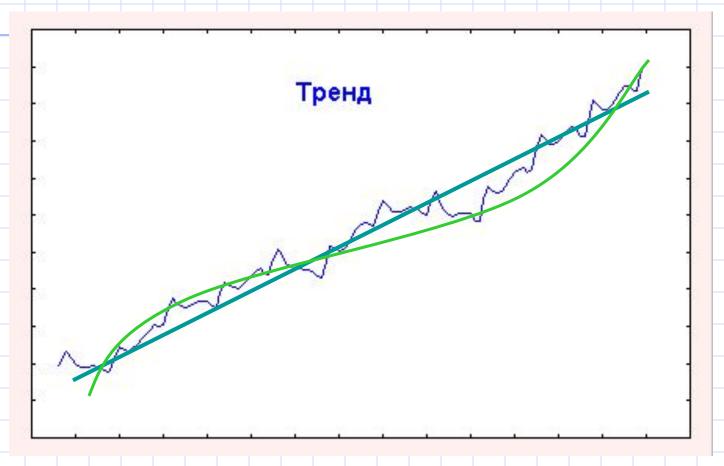
• Показательная

$$y(x) = a * b^x$$

• Экспоненциальная

$$y(x) = a * e^{bx}$$

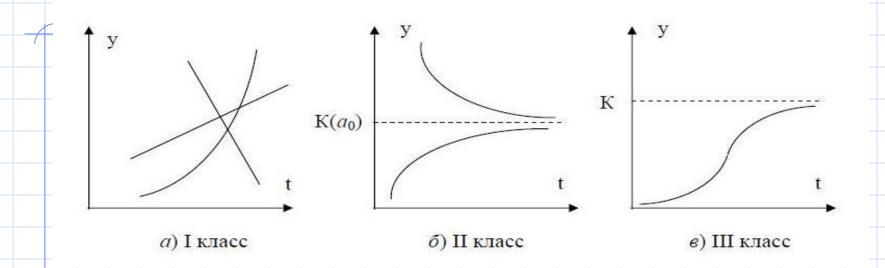
• Гиперболическая


$$y(x) = a + b / x$$

• Логарифмическая  $y(x) = a + b * \lg(x)$ 

## **Для определения вида тенденции** применяются следующие методы:

- качественный анализ изучаемого процесса;
  - построение и визуальный анализ графика зависимости уровней ряда от времени;
    - расчет и анализ показателей динамики временного ряда (абсолютные приросты, темпы роста и др.);
    - метод перебора, при котором строятся тренды различного вида с последующим выбором наилучшего на основании значения скорректированного коэффициента детерминации.


#### Различные виды тренда



Какую линию следует использовать?

### Выбор вида тенденции на основе

качественного анализа



Процессы с монотонным характером развития и отсутствием пределов роста

Функции:

- **✓**∧инейная,
- ✓параболическая,
- ✓экспоненциальная,
- ✓степенная.

Процессы, имеющие предел роста (падения), так называемые процессы с «насыщением»

Функции:

- ✓ гиперболическая,
- ✓ модифицированная экспонента.

S-образные процессы

Функция:

✓ ∧огистическая.

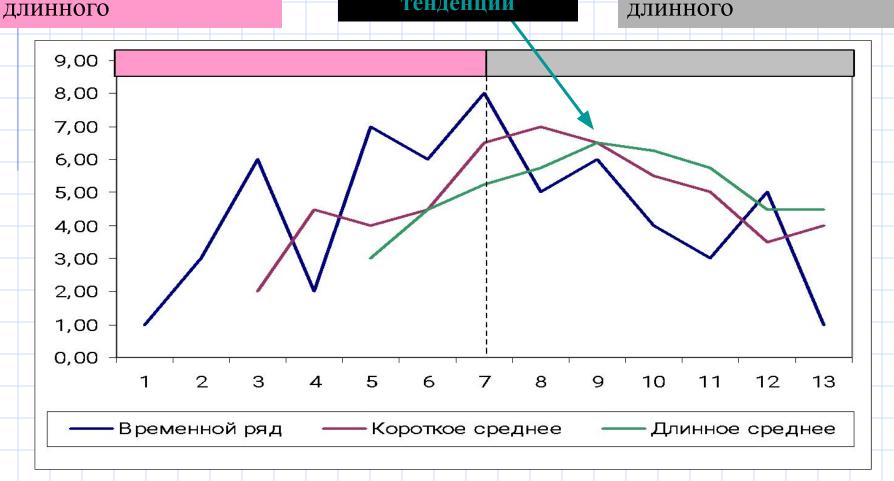
$$y_t = \frac{K}{1 + a_0 e^{-bt}}$$

#### Метод скользящего среднего

## Позволяет сгладить случайные и периодические колебания и выявить тенденцию

- 1. Определить длину интервала сглаживания. Чем он больше, тем в большей степени поглащаются колебания ( $\boldsymbol{l}$ )
- 2. Весь ряд данных разбивается на участки длиной *l*, при этом он скользит по ряду с шагом 1
- 3. Рассчитать средние каждого участка
- 4. Фактические значения стоящие в центре каждого участка заменяют на соответствующие средние (удобно брать длину интервала сглаживания нечетной)

При сглаживании ряд становится «короче» на (l-1) значение


Чем больше l, тем сильнее сглаживается ряд

#### Выявление смены тенденции

**Область роста**Короткое среднее располагается выше

Индикатор смены тенденции

Область спада
Короткое среднее
располагается ниже
длинного



#### Автокорреляция уровней временного ряда -

это корреляционная зависимость между последовательными уровнями временного ряда.

Измеряется с помощью <u>линейного коэффициента</u> корреляции между уровнями исходного временного ряда и уровнями ряда, сдвинутыми на несколько шагов назад во времени:

$$r_{\tau} = \frac{\sum_{t=\tau+1}^{n} (y_{t} - \bar{y}_{1\tau}) \cdot (y_{t-\tau} - \bar{y}_{2\tau})}{\sum_{t=\tau+1}^{n} (y_{t} - \bar{y}_{1\tau})^{2} \cdot \sum_{t=\tau+1}^{n} (y_{t-\tau} - \bar{y}_{2\tau})^{2}}$$

$$\frac{\sum_{t=\tau+1}^{n} y_{t}}{y_{1\tau}} = \frac{\sum_{t=\tau+1}^{n} y_{t-\tau}}{n-\tau} \qquad \overline{y}_{2\tau} = \frac{\sum_{t=\tau+1}^{n} y_{t-\tau}}{n-\tau}$$

#### т – величина сдвига во времени, или лаг

Например, лаг т=1 означает, что ряд сдвинут на один период (момент) назад и т.д. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается.

$$\frac{\sum_{t=2}^{n} (y_t - \bar{y}_1) \cdot (y_{t-1} - \bar{y}_2)}{\sqrt{\sum_{t=2}^{n} (y_t - \bar{y}_1)^2 \cdot \sum_{t=2}^{n} (y_{t-1} - \bar{y}_2)^2}}$$

$$\tau = 2 \implies r_2 = \frac{\sum_{t=3}^{n} (y_t - \overline{y}_3) \cdot (y_{t-2} - \overline{y}_4)}{\sqrt{\sum_{t=3}^{n} (y_t - \overline{y}_3)^2 \cdot \sum_{t=3}^{n} (y_{t-2} - \overline{y}_4)^2}}$$

#### Свойства коэффициента автокорреляции:

- характеризует *тесноту только линейной связи* текущего и предыдущего уровней ряда, поэтому по данному коэффициенту можно судить о наличии линейной или близкой к линейной тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию, коэффициент автокорреляции может приближаться к нулю;
- по *знаку* коэффициента автокорреляции нельзя судить о возрастающей или убывающей тенденции в уровнях ряда.

**Автокорреляционная функция временного ряда (АКФ)** – это последовательность
коэффициентов автокорреляции первого, второго и т.д. порядков.

**Коррелограмма** – это график зависимости значений  $AK\Phi$  от величины лага.

Коррелограмма временного ряда потребления электроэнергии

| Лаг<br>(квартал) | Коэффициент автокорреляции<br>уровней | Коррелограмма |  |  |
|------------------|---------------------------------------|---------------|--|--|
| 1                | 0,165154                              |               |  |  |
| 2                | 0,566873                              |               |  |  |
| 3                | 0,113558                              |               |  |  |
| 4                | 0,983025                              |               |  |  |
| 5                | 0,118711                              |               |  |  |
| б                | 0,722046                              |               |  |  |
| 7                | 0,003367                              |               |  |  |
| 8                | 0,973848                              |               |  |  |

## Анализ автокорреляционной функции

Если максимальный коэффициент автокорреляции оказался **1-го порядка**, то исследуемый ряд содержит **только тенденцию** 

Если максимальным оказался коэффициент автокорреляции порядка t, то ряд содержит колебания с периодичностью в t моментов времени

Если **ни один** не является значимым – ряд не содержит тенденции и нет циклической компоненты. Ряд формируется под воздействием случайных факторов (можно провести дополнительный анализ на наличие неличейной тенденции)

#### Моделирование периодических колебаний

Построение аддитивной и мультипликативной моделей сводится к расчету значений T, S, E для каждого уровня ряда.

#### <u>Процесс построения модели включает в себя</u> <u>следующие этапы:</u>

- 1. Выравнивание исходного ряда методом скользящей средней.
- 2. Расчет значений периодической компоненты S.
- 3. Устранение периодической компоненты из исходных уровней ряда и получение выравненных данных (T+E) в аддитивной или  $(T \cdot E)$  в мультипликативной модели.
- 4. Аналитическое выравнивание уровней ряда и расчет значений T с использованием полученного уравнения тренда.
- 5. Расчет полученных по модели значений (T+S) или  $(T \circ S)$ .
- 6. Расчет абсолютных и/или относительных ошибок.

#### Корректировочный коэффициент для сезонной компоненты

Должно выполняться условие:

Для аддитивной модели: Для мультипликативной модели:

$$\sum \overline{S}_i = 0 \qquad \qquad \sum \overline{S}_i = \tau$$

Если условие не выполняется, то вводится корректировочный коэффициент:

$$k = \frac{\sum \overline{S}_i}{\tau} \qquad k = \frac{\tau}{\sum \overline{S}_i}$$

Корректировка сезонной компоненты:

$$S_i = \overline{S}_i - k$$
  $S_i = \overline{S}_i \cdot k$ 

# Для оценки качества построенной модели используют сумму квадратов ошибок (случайной компоненты):

$$\frac{\sum E^{2}}{(1 - \frac{\sum (y - \bar{y})^{2}}{}) \cdot 100}$$

коэффициент показывает долю вариации результативного признака, которая объясняется построенной моделью

## 1 этап. Выравнивание исходного ряда методом скользящей средней

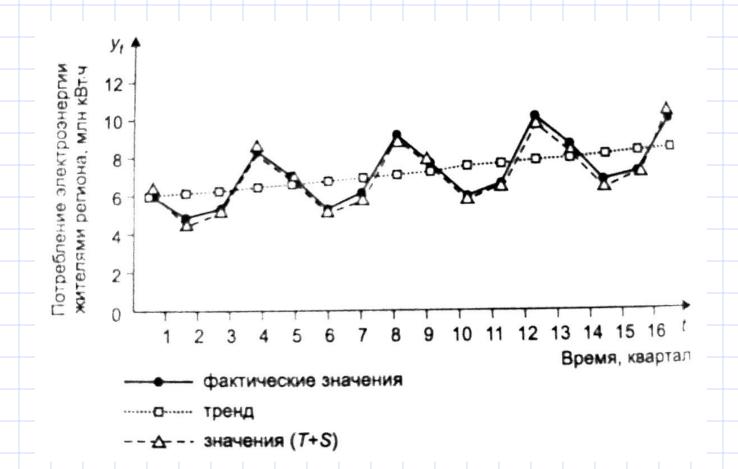
Расчет оценок сезонной компоненты в аддитивной модели

| Кварталы | Потребление<br>эд/энергии | Итого за 4<br>квартала | Скользящая<br>средняя за 4<br>квартала                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Центрированная<br>скользящая<br>средняя | Оценка се-<br>зонной<br>компонен-<br>ты |
|----------|---------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|
| 1        | 2                         | 3                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                       | 6=2-5                                   |
| 1        | 6,0                       | 146.000.00             | No. No. of the last of the las |                                         |                                         |
| 2        | 4,4                       | 24,4                   | 6,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                         |
| 3        | 5,0                       | 25,6                   | 6,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,250                                   | -1,250                                  |
| 4        | 9,0                       | 26,0                   | 6,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,450                                   | 2,550                                   |
| 5        | 7,2                       | 27,0                   | 6,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,625                                   | 0,575                                   |
| 6        | 4,8                       | 28,0                   | 7,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,875                                   | -2,075                                  |
| 7        | 6,0                       | 28,8                   | 7,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,100                                   | -1,100                                  |
| 8        | 10,0                      | 29,6                   | 7,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,300                                   | 2,700                                   |
| 9        | 8,0                       | 30,0                   | 7,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,450                                   | 0,550                                   |
| 10       | 5,6                       | 21,0                   | 7,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,625                                   | -2,025                                  |
| 11       | 6,4                       | 32,0                   | 8,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,875                                   | -1,475                                  |
| 12       | 11,0                      | 33,0                   | 8,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,125                                   | 2,875                                   |
| 13       | 9,0                       | 33,6                   | 8,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,325                                   | 0,675                                   |
| 14       | 6,6                       | 33,4                   | 8,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,375                                   | -1,775                                  |
| 15       | 7,0                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | i i                                     |
| 16       | 10,8                      | //                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | i e                                     |

## 2 этап. Расчет значений периодической компоненты S

Расчет значений сезонной компоненты в аддитивной модели

| Показатель                                                                                         | Год                                    | Кварталы |        |        |       |  |
|----------------------------------------------------------------------------------------------------|----------------------------------------|----------|--------|--------|-------|--|
|                                                                                                    | .0000000000000000000000000000000000000 | 1        | 2      | 3      | 4     |  |
|                                                                                                    | 1ый                                    |          | 9      | -1,250 | 2,550 |  |
|                                                                                                    | 2ой                                    | 0,575    | -2,075 | 1,100  | 2,700 |  |
|                                                                                                    | Зий                                    | 0,550    | -2,025 | -1,475 | 2,875 |  |
|                                                                                                    | 4ый                                    | 0,675    | -1,775 | 3      | 100   |  |
| Итого за į-й квар-<br>тал (за все годы)                                                            | X.                                     | 1,800    | -5,875 | -3,825 | 8,125 |  |
| Средняя оценка сезонной компо-<br>ненты для $\mathfrak{i}$ -го квартала, $\widetilde{\mathcal{S}}$ | ¥                                      | 0,600    | -1,958 | -1,275 | 2,708 |  |
| Скорректированная<br>сезонная компо-<br>нента, S;                                                  | X                                      | 0,581    | -1,977 | -1,294 | 2,690 |  |


# 3 этап. Устранение периодической компоненты из исходных уровней ряда и получение выравненных данных (T+E)

Расчет выравненных значений T и  $\underline{E}$  в аддитивной модели

| t  | у    | S      | T+E=<br>y-S | T     | T+S    | E=<br>y-(T+S) | $E^2$  |
|----|------|--------|-------------|-------|--------|---------------|--------|
| 1  | 2    | 3      | 4           | 5     | 6      | 7             | 8      |
| 1  | 6,0  | 0,581  | 5,914       | 5,902 | 6,483  | -0,483        | 0,2333 |
| 2  | 4,4  | -1,977 | 6,337       | 6,088 | 4,111  | 0,289         | 0,0835 |
| 3  | 5,0  | -1,294 | 6,294       | 6,275 | 4,981  | 0,019         | 0,0004 |
| 4  | 9,0  | 2,690  | 6,310       | 6,461 | 9,151  | -0,151        | 0,0228 |
| 5  | 7,2  | 0,581  | 6,619       | 6,648 | 7,229  | -0,029        | 0,0008 |
| 6  | 4,8  | -1,977 | 6,777       | 6,834 | 4,857  | -0,057        | 0,0032 |
| 7  | 6,0  | -1,294 | 7,294       | 7,020 | 5,727  | 0,273         | 0,0745 |
| 8  | 10,0 | 2,690  | 7,310       | 7,207 | 9,896  | 0,104         | 0,0108 |
| 9  | 8,0  | 0,581  | 7,419       | 7,393 | 7,974  | 0,026         | 0,0007 |
| 10 | 5,6  | -1,977 | 7,577       | 7,580 | 5,603  | -0,030        | 0,0009 |
| 11 | 6,4  | -1,294 | 7,694       | 7,766 | 6,472  | -0,072        | 0,0052 |
| 12 | 11,0 | 2,690  | 8,310       | 7,952 | 10,642 | 0,358         | 0,1282 |
| 13 | 9,0  | 0,581  | 8,419       | 8,139 | 8,720  | 0,280         | 0,0784 |
| 14 | 6,6  | -1,977 | 8,577       | 8,325 | 6,348  | 0,252         | 0,0635 |
| 15 | 7,0  | -1,294 | 8,294       | 8,519 | 7,218  | -0,218        | 0,0475 |
| 16 | 10,8 | 2,690  | 8,110       | 8,698 | 11,388 | -0,588        | 0,3457 |

4 этап. Аналитическое выравнивание уровней ряда и расчет значений *T* с использованием полученного уравнения тренда

$$T = 5,715 + 0,186t$$

