Calculus++ Light

F

fic

0

Question 1. A sequence a_n , n = 1, 2, 3, ...,satisfies $\lim_{n \to \infty} (2n-1)a_n = 16$. a) Use the definition of limit to obtain a sandwich inequality for a_{μ} . Solution: Since the limit of $(2n-1)a_n$ is 16 we have: $\forall \varepsilon > 0, \exists N, \forall n > N : | (2n-1)a_n - 16$ Set $\varepsilon = 1$, then $|(2n-1)a_n - 16| < 1$, $\forall n > N$. That is, $-1 < (2n-1)a_n - 16 < 1$ $\Leftrightarrow 15 < (2n-1)a_n < 17$

b) Conclude that $\lim a_n = 0$, and find lim na, We have $na_n = \frac{1}{2}(2n-1)a_n + \frac{1}{2}a_n + \frac{1}{2}a$ Therefore $\lim_{n \to \infty} na_n = \lim_{n \to \infty} \frac{1}{2} (2n-1)a_n + \lim_{n \to \infty} \frac{1}{2}a_n$

Also known as Hysterical Calculus

Question 2. A sequence x_n , n = 1, 2, 3, ... is defined by the relationship $x_n = \frac{x_{n-1} + x_{n-2}}{x_n}$ and the initial conditions $x_1 = a, x_2 = b$.² Find $\lim x_n$. Solution. We begin with finding an explicit expression for the general term of the sequence x_{μ} . Let us try the following formula: $\chi_n = c\lambda^n$. $x_n = \frac{x_{n-1} + x_{n-2}}{2} \Longrightarrow c\lambda^n = \frac{1}{2}c\lambda^{n-1} + \frac{1}{2}c\lambda^{n-2}.$ Divide both sides by $c\lambda^{n-2}$ to obtain $\lambda^2 = \frac{1}{2}\lambda + \frac{1}{2}$, or $\lambda^2 - \frac{1}{2}\lambda - \frac{1}{2} = 0 \implies \lambda_1 = 1, \ \lambda_2 = -\frac{1}{2}.$

Thus, we found two sequences that satisfy the defining relationship $x_n = \frac{x_{n-1} + x_{n-2}}{x_n}$: $x_n^{(1)} = c_1$ and $x_n^{(2)} = c_2 \left(-\frac{1}{2}\right)^n$. Do any of these sequences satisfy the initial conditions $x_1 = a, x_2 = b$? Well, if a = b, then the first sequence with $\chi_n^{(1)}$ satisfies the initial conditions. If $b = -\frac{1}{2}a$, then the second sequence with $c_2 = -2a$, $\chi_n^{(2)} = a$ (satisfies the initial conditions.

But what should we do if *a* and *b* are arbitrary?

Well, we can consider linear combination of the two obtained sequences $x_n = c_1 + c_2 \left(-\frac{1}{2}\right)^n$. Let us check that this linear combination indeed satisfies the equation $x_n = \frac{x_{n-1} + x_{n-2}}{2}$ We have $\frac{x_{n-1} + x_{n-2}}{2} = \frac{c_1 + c_2 \left(-\frac{1}{2}\right)^{n-1} + c_1 + c_2 \left(-\frac{1}{2}\right)^{n-2}}{2}$ $= c_1 + c_2 \left(-\frac{1}{2}\right)^n \frac{\left(-\frac{1}{2}\right)^{-1} + \left(-\frac{1}{2}\right)}{2}$ $= c_1 + c_2 \left(-\frac{1}{2}\right)^n = \chi_n$

Now all we have to do is to find the values of c_1 and c_2 such that our sequence also satisfies the initial conditions: $x_1 = c_1 + c_2(-\frac{1}{2}) = a,$ $x_2 = c_1 + \frac{1}{4}c_2 = b.$ For the values of arbitrary constants c_1 and we obtain $3c_1 = a + 2b$, $\frac{3}{4}c_2 = b - a$. $x_n = \frac{a+2b}{3} + \frac{4}{3}(b-a)(-\frac{1}{2})^n.$ Thus Now the limit $n \rightarrow n$ to find: $\lim x_n = \frac{1}{3}a + \frac{2}{3}b.$

The method of the week To find the sequence that satisfies the defining relationship $x_n = \beta x_{n-1} + \gamma x_{n-2}$, and the initial conditions $x_1 = a_1 x_2 = b$ we have to:

 $x_n = c_1 \lambda_1^n + c_2 \lambda_2^n,$ and find the values of constants c_1 and c_2 , such that $x_1 = a, x_2 = b.$ Question 3 a). Find the following limit $\liminf \pi \sqrt{n^2 + 1}.$ $n \rightarrow \infty$ Solution: We have $\sin(\pi\sqrt{n^2+1}) = \sin(\pi\sqrt{n^2+1} - \pi n + \pi n)$ $= \sin\left(\pi\sqrt{n^2 + 1} - \pi n\right)\cos(\pi n) + 1$ $+\cos\left(\pi\sqrt{n^2+1}-\pi n\right)\sin(\pi n)$ $=\sin\left(\pi\sqrt{n^2+1}-\pi n\right)(-1)^n.$

We have
$$\sqrt{n^2 + 1} - n =$$

$$= (\sqrt{n^2 + 1} - n) \frac{\sqrt{n^2 + 1} + n}{\sqrt{n^2 + 1} + n} = \frac{n^2 + 1 - n^2}{\sqrt{n^2 + 1} + n}$$

$$= \frac{1}{\sqrt{n^2 + 1} + n}$$
The obtained identity yields
 $\sin(\pi \sqrt{n^2 + 1}) = \sin(\pi \sqrt{n^2 + 1} - \pi n) (-1)^n$
 $= \sin\left(\frac{\pi}{\sqrt{n^2 + 1} + n}\right) (-1)^n$.

Therefore we can use the following sandwich inequality

Question 4. State a (positive) definition of a divergent sequence $\{x_n\}$. Solution: We begin with the definition of a convergent sequence. A sequence $\{x_n\}$ converges to a number L, if $\forall \varepsilon > 0, \exists N, \forall n > N : |x_n - L| < \varepsilon.$ A sequence $\{x_n\}$ does not converges to a number L, if $\exists \varepsilon > 0, \forall N, \exists n > N : |x_n - L| > \varepsilon.$ A sequence $\{x_n\}$ is divergent, if it does not converges to any number L. $\forall L, \exists \varepsilon > 0, \forall N, \exists n > N : | x_n - L$

Question 5. Draw the curve defined by the equation $\lim \sqrt[n]{|x|^n} + |y|^n = 1$ in the xy – plane. Solution. To begin with, we calculate the limit $\lim \sqrt[n]{|x|^n + |y|^n},$ in the particular case x = -7, y = 5. We have $|-7|^n \le |-7|^n + |5|^n \le 2 |-7|^n$. Hence, $|-7| \le \sqrt[n]{|-7|^n} + |5|^n \le \sqrt[n]{2} |-7|$. Since lim the sandwich theorem $n \rightarrow \infty$ tells us that $\lim \sqrt[n]{|-7|^n} + |5|^n = |-7| = 7$.

Now we can find the limit $\lim_{n \to \infty} |x|^n + |y|^n$. $n \rightarrow \infty$ Note the following double inequality $(\max(|x|,|y|))^n \le |x|^n + |y|^n \le n$ $\leq 2\left(\max(|x|,|y|)\right)^n.$ Hence $\max(|x|, |y|) \le \sqrt[n]{|x|^n + |y|^n} \le$ $\leq \sqrt[n]{2} \max(|x|,|y|).$

lim the sandwich theorem Since $n \rightarrow \infty$ tells us that $\lim_{x \to \infty} \|x\|^n + \|y\|^n = \max(\|x\|, \|y\|).$ $n \rightarrow \infty$ Thus, we have to draw the curve defined by the equation

 $\max(|x|, |y|) = 1.$

Question 6. Use the definition of convergent sequence to obtain a sandwich inequality for the sequence $x_n = \left(\frac{1007}{1008} + \frac{\sin n}{n}\right)^n, \quad n = 1, 2, 3, \dots,$ and find the limit of this sequence. Solution: The sequence $y_n = \frac{\sin n}{2}$ n converges to 0. Therefore, according to the definition of the limit, $\forall \varepsilon > 0, \exists N, \forall n > N : |y_n - 0| < \varepsilon$ Choose ε =and denote N_1 – the 2016 corresponding value of N. The definition tells us that S1nn for all $n > N_1$. -20162016 n sinn 10082016 1008 10082016n $\frac{2013}{\leq} \frac{1007}{m} + \frac{\sin n}{\sin n}$ 20M1008 *n* 2016 Therefore we obtain the following sandwich inequality for our sequence x $\leq \left(\frac{1007}{1008} + \frac{\sin n}{n}\right)$ <mark>2013</mark> for all n >

Now the sandwich theorem tells us that $\lim_{n \to \infty} \left(\frac{1007}{1008} + \frac{\sin n}{n} \right)^n = 0.$