

Question 1. A sequence $a_{n}, n=1,2,3, \ldots$, satisfies
a) Use the definition of limit to obtain a sandwich inequality for a_{n}.
Solution: Since the limit of $(2 n-1) a_{n}$ is 16 we have:

Set $\varepsilon=1$, then
That is,
b) Conclude that and find

We have
Therefore

Question 2. A sequence $x_{n}, n=1,2,3, \ldots$ is
defined by the relationship $\quad x_{n}=\frac{x_{n-1}+x_{n-2}}{2}$ and the initial conditions $x=a, x_{2}=b$.
Find $\lim _{n \rightarrow \infty} x_{n}$.
Solution. We begin with finding an explicit expression for the general term of the sequence x_{n}.
Let us try the following formula: $x_{n}=c \lambda^{n}$.

$$
x_{n}=\frac{x_{n-1}+x_{n-2}}{2} \Rightarrow c \lambda^{n}=\frac{1}{2} c \lambda^{n-1}+\frac{1}{2} c \lambda^{n-2}
$$

Divide both sides by $c \lambda^{n-2}$ to obtain $\lambda^{2}=\frac{1}{2} \lambda+\frac{1}{2}$, or $\lambda^{2}-\frac{1}{2} \lambda-\frac{1}{2}=0 \Rightarrow \lambda_{1}=1, \lambda_{2}=-\frac{1}{2}$.

Thus, we found two sequences that satisfy the defining relationship $x_{n}=\frac{x_{n-1}+x_{n-2}}{2}$: $x_{n}^{(1)}=c_{1}$ and $x_{n}^{(2)}=c_{2}\left(-\frac{1}{2}\right)^{n}$.
Do any of these sequences satisfy the initial conditions $x_{1}=a, x_{2}=b$?
Well, if $a=b$, then the first sequence with $x_{n}^{(1)}$ satisffies the initial conditions.
If $b=-1 / 2 a$, then the second sequence with $c_{2}=-2 a, x_{n}^{(2)}=a$ (satis)fieds, the initial conditions.
But what should we do if a and b are arbitrary?

Well, we can consider linear combination of
the two obtained sequences $x_{n}=c_{1}+c_{2}\left(-\frac{1}{2}\right)^{n}$. Let us check that this linear combination
indeed satisfies the equation $x_{n}=\frac{x_{n-1}+x_{n-2}}{2}$.
We have

$$
\begin{aligned}
\frac{x_{n-1}+x_{n-2}}{2} & =\frac{c_{1}+c_{2}\left(-\frac{1}{2}\right)^{n-1}+c_{1}+c_{2}\left(-\frac{1}{2}\right)^{n-2}}{2} \\
& =c_{1}+c_{2}\left(-\frac{1}{2}\right)^{n} \frac{\left(-\frac{1}{2}\right)^{-1}+\left(-\frac{1}{2}\right)^{-2}}{2} \\
& =c_{1}+c_{2}\left(-\frac{1}{2}\right)^{n}=x_{n} .
\end{aligned}
$$

Now all we have to do is to find the values of c_{1} and c_{2} such that our sequence also satisfies the initial conditions:

$$
\begin{aligned}
& x_{1}=c_{1}+c_{2}\left(-\frac{1}{2}\right)=a, \\
& x_{2}=c_{1}+\frac{1}{4} c_{2}=b
\end{aligned}
$$

For the values of arbitrary constants c_{1} and c_{2} we obtain $3 c_{1}=a+2 b, \frac{3}{4} c_{2}=b-a$.
Thus $\quad x_{n}=\frac{a+2 b}{3}+\frac{4}{3}(b-a)\left(-\frac{1}{2}\right)^{n}$.
Now the limit n is, not difficult to find:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=\frac{1}{3} a+\frac{2}{3} b . \tag{6}
\end{equation*}
$$

To find the sequence that satisfies the defining relationship $x_{n}=\beta x_{n-1}+x x_{n-2}$, and the initial conditions $x_{1}=a, x_{2}=b$ we have to:

1. Write down the characteristic equation

$$
\lambda^{2}-\beta \lambda-\gamma=0
$$

and obtain its roots λ_{1}, λ_{2}.
2. Write down the general formula for x_{n} :

$$
x_{n}=c_{1} \lambda_{1}^{n}+c_{2} \lambda_{2}^{n},
$$

and find the values of constants c_{1} and c_{2}, such that $x_{1}=a, x_{2}=b$.

Question 3 a). Find the following limit

$$
\lim _{n \rightarrow \infty} \sin \left(\pi \sqrt{n^{2}+1}\right)
$$

Solution: We have
$\sin \left(\pi \sqrt{n^{2}+1}\right)=\sin \left(\pi \sqrt{n^{2}+1}-\pi n+\pi n\right)$

$$
.1+2
$$

$$
=\sin \left(\pi \sqrt{n^{2}+1}-\pi n\right) \cos (\pi n)+
$$

$$
\begin{aligned}
& \quad+\cos \left(\pi \sqrt{n^{2}+1}-\pi n\right) \underbrace{\sin (\pi n)} \\
& =\sin \left(\pi \sqrt{n^{2}+1}-\pi n\right)(-1)^{n} .
\end{aligned}
$$

We have $\sqrt{n^{2}+1}-n=$

$$
=\left(\sqrt{n^{2}+1}-n\right) \frac{\sqrt{n^{2}+1}+n}{\sqrt{n^{2}+1}+n}=\frac{n^{2}+1-n^{2}}{\sqrt{n^{2}+1}+n}
$$

$$
=\frac{1}{\sqrt{n^{2}+1}+n}
$$

The obtained identity yields
$\sin \left(\pi \sqrt{n^{2}+1}\right)=\sin \left(\pi \sqrt{n^{2}+1}-\pi n\right)(-1)^{n}$

$$
=\sin \left(\frac{\pi}{\sqrt{n^{2}+1}+n}\right)(-1)^{n} .
$$

Therefore we can use the following sandwich inequality
$\begin{aligned}-\sin \left(\frac{\pi}{\sqrt{n^{2}+1}+n}\right) & \leq \sin \left(\pi \sqrt{n^{2}+1}\right) \leq \\ & \leq \sin \left(\frac{\pi}{\sqrt{n^{2}+1}+n}\right) .\end{aligned}$
Since $\sin x$ is a continuous function we obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sin \left(\frac{\pi}{\sqrt{n^{2}+1}+n}\right) & =\sin \left(\lim _{n \rightarrow \infty} \frac{\pi}{\sqrt{n^{2}+1}+n}\right) \\
& =\sin 0=0 .
\end{aligned}
$$

Hence, the sandwich theorem tells us that

$$
\lim _{n \rightarrow \infty} \sin \left(\pi \sqrt{n^{2}+1}\right)=0
$$

Question 4. State a (positive) definition of a divergent sequence $\left\{x_{n}\right\}$.
Solution: We begin with the definition of a convergent sequence.
A sequence $\left\{x_{n}\right\}$ converges to a number L, if

$$
\forall \varepsilon>0, \exists N, \forall n>N:\left|x_{n}-L\right|<\varepsilon .
$$

A sequence $\left\{x_{n}\right\}$ does not converges to a number L, if

$$
\exists \varepsilon>0, \forall N, \exists n>N:\left|x_{n}-L\right|>\varepsilon .
$$

A sequence $\left\{x_{n}\right\}$ is divergent, if it does not converges to any number L.

Question 5. Draw the curve defined by the equation $\lim _{n \rightarrow \infty} \sqrt[n]{|x|^{n}}+|y|^{n}=1$ in the $x y$-plane.
Solution. To begin with, we calculate the limit

$$
\lim _{n \rightarrow \infty} \sqrt[n]{|x|^{n}+|y|^{n}}
$$

in the particular case $x=-7, y=5$.
We have $|-7|^{n} \leq|-7|^{n}+|5|^{n} \leq 2|-7|^{n}$.
Hence, $|-7| \leq \sqrt[n]{|-7|^{n}+|5|^{n}} \leq \sqrt[n]{2}|-7|$.
Since lim the sand dwich theorem

$$
n \rightarrow \infty
$$

tells us that $\lim _{n \rightarrow \infty} \sqrt[n]{|-7|^{n}+|5|^{n}}=|-7|=7$.

Now we can find the limit $\lim _{n \rightarrow \infty} \sqrt[n]{|x|^{n}+|y|^{n}}$. Note the following double inequality
$(\max (|x|,|y|))^{n} \leq|x|^{n}+|y|^{n} \leq$

Hence

$$
\leq 2(\max (|x|,|y|))^{n} .
$$

$$
\begin{aligned}
\max (|x|,|y|) \leq \sqrt[n]{|x|^{n}}+|y|^{n} & \leq \\
& \leq \sqrt[n]{2} \max (|x|,|y|) .
\end{aligned}
$$

Since lim the sand wich theorem

$$
n \rightarrow \infty
$$

tells us that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{|x|^{n}+|y|^{n}}=\max (|x|,|y|) .
$$

Thus, we have to draw the curve defined by the equation

$$
\max (|x|,|y|)=1
$$

Let us look at the $x y$-plane:

The graph of the curve $\lim _{n \rightarrow \infty} \sqrt[n]{|x|^{n}+|y|^{n}}=1$.

Question 6. Use the definition of convergent sequence to obtain a sandwich inequality for the sequence

$$
x_{n}=\left(\frac{1007}{1008}+\frac{\sin n}{n}\right)^{n}, \quad n=1,2,3, \ldots
$$

and find the limit of this sequence.
Solution: The sequence $y_{n}=\frac{\sin n}{n}$ converges to 0 .
Therefore, according to the definition of the limit, $\forall \varepsilon>0, \exists N, \forall n>N:\left|y_{n}-0\right|<\varepsilon$.
Choose $\varepsilon=$ and denote N_{1} - the 2016 corresponding value of N.

The definition tells us that

$$
\begin{gathered}
-\frac{1}{2016} \leq \frac{\sin n}{n} \leq \frac{1}{2016} \text { for all } n>N_{1} . \\
\Rightarrow \frac{1007}{1008}-\frac{1}{2016} \leq \frac{1007}{1008}+\frac{\sin n}{n} \leq \frac{1007}{1008}+\frac{1}{2016} \\
\Rightarrow \frac{2013}{2016} \leq \frac{1007}{1008}+\frac{\sin n}{n} \leq \frac{2015}{2016}
\end{gathered}
$$

Therefore we obtain the following sandwich inequality for our sequence x
$\left(\frac{2013}{2016}\right)^{n} \leq\left(\frac{1007}{1008}+\frac{\sin n}{n}\right)^{n} \leq$ $\leq\left(\frac{2015}{2016}\right)^{n}$ for all $n>N_{1}$.

Now the sandwich theorem tells us that

$$
\lim _{n \rightarrow \infty}\left(\frac{1007}{1008}+\frac{\sin n}{n}\right)^{n}=0 .
$$

