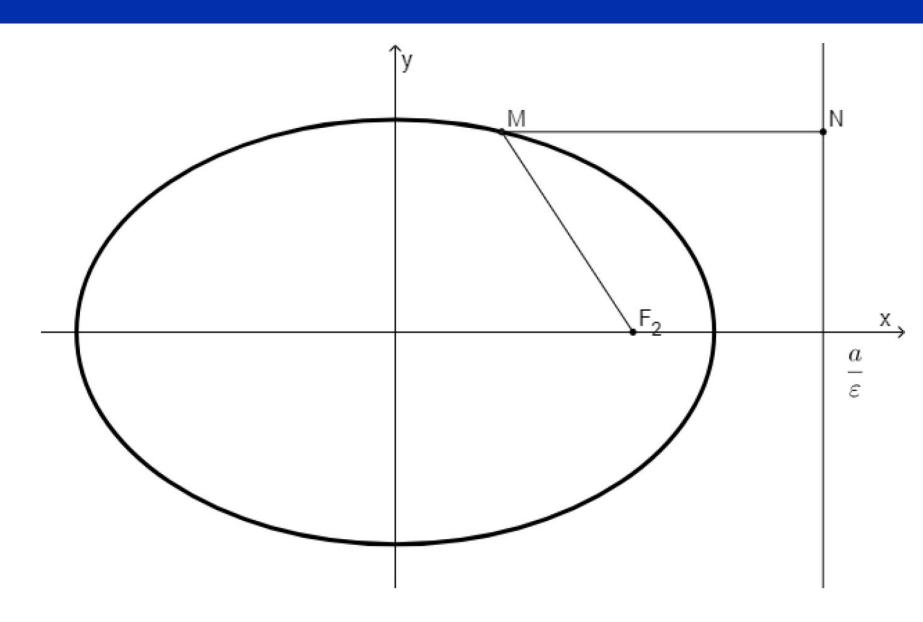


Кривые 2-го порядка: эллипс, гипербола, парабола

Директрисы: прямые $x = \pm \frac{a}{\varepsilon}$, где \mathcal{E} - эксцентриситет эллипса, заданного уравнением $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

$$\frac{\left|MF_{2}\right|}{\left|MN\right|} = \frac{a - \varepsilon x}{\frac{a}{\varepsilon}} = \frac{\varepsilon(a - \varepsilon x)}{a - \varepsilon x} = \varepsilon$$



Эллипс есть Г.М.Т. плоскости, для которых отношение фокального расстояния к расстоянию до фиксированной прямой (директрисы) есть величина постоянная, равная $\varepsilon(0 < \varepsilon < 1)$ - эксцентриситету.

ЗАМЕЧАНИЕ.

Эллипс может быть задан:

а) параметрически:

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}, t \in [0, 2\pi],$$

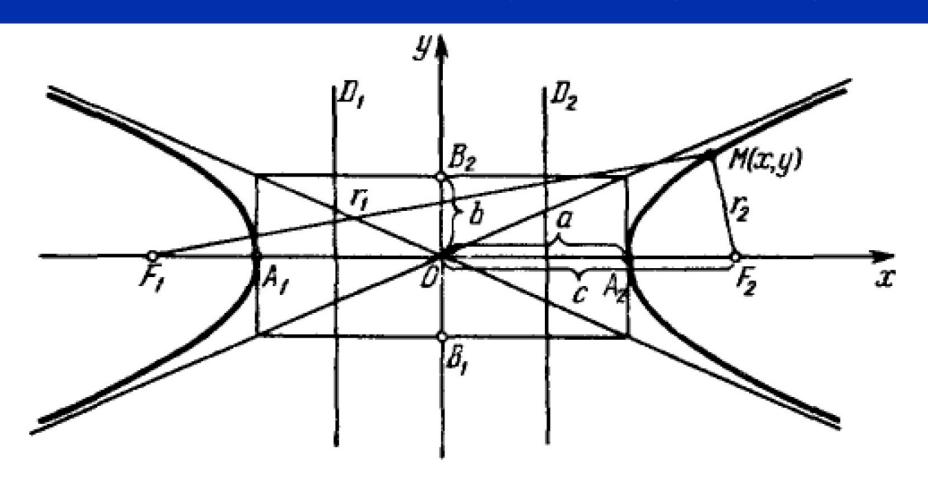
б) полярным уравнением:

$$r = \frac{p}{1 - \varepsilon \cos \theta}, \theta \in [0, 2\pi].$$

https://www.desmos.com/calculator/jz0xvod9ft

ОПРЕДЕЛЕНИЕ. Гипербола- это Γ .М.Т плоскости, для которых разность расстояний до 2-х фиксированных точек F_1 и F_2 (называемых фокусами) есть заданная постоянная величина.

$$F_1(-c,0), F_2(c,0)$$



$$||MF_1| - |MF_2|| = 2a (a < c)$$

$$\left| \sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} \right| = 2a,$$

$$\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = \pm 2a$$

$$\sqrt{(x+c)^2 + y^2} = \pm 2a + \sqrt{(x-c)^2 + y^2}$$

$$\pm 4a\sqrt{(x-c)^2 + y^2} = 4xc - 4a^2$$

$$\sqrt{(x-c)^2 + y^2} = |a - \varepsilon x|,$$

Фокальные уравнения гиперболы:

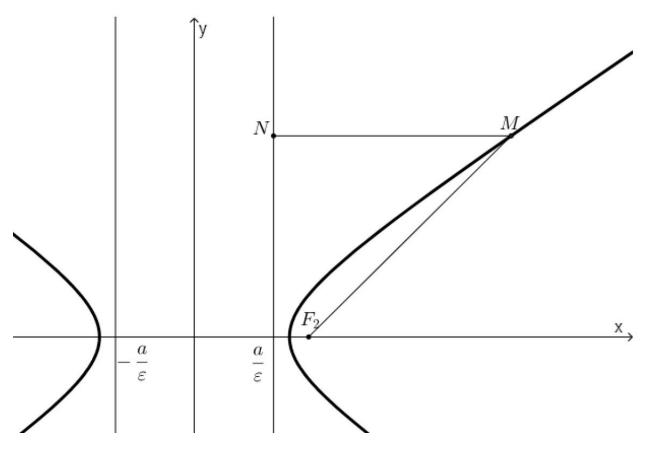
$$|MF_{2}| = |a - \varepsilon x|, |MF_{1}| = |a + \varepsilon x|.$$

$$\sqrt{(x+c)^{2} + y^{2}} = \pm 2a + \sqrt{(x-c)^{2} + y^{2}}$$

$$b^{2} = c^{2} - a^{2}$$

$$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1$$

- каноническое уравнение гиперболы.



$$\frac{\left|MF_{2}\right|}{d} = \frac{\left|a - \varepsilon x\right|}{x - \frac{a}{\varepsilon}} = \frac{\left|a - \varepsilon x\right|}{\varepsilon x - a} = \varepsilon$$

Гипербола — это Γ .М.Т, для которых отношение расстояния до фиксированной точки (фокуса) к расстоянию до фиксированной прямой (директрисы) есть величина постоянная, равная эксцентриситету ε : $\varepsilon > 1$.

ЗАМЕЧАНИЕ.

- 1. Гипербола может быть задана:
- а) параметрически:

$$\begin{cases} x = \pm a \cdot \text{ch}t \\ y = b \cdot \text{sh}t \end{cases}, t \in R$$

б) полярным уравнением:

$$r = \frac{p}{1 - \varepsilon \cos \theta}, \theta \in [0, 2\pi]$$

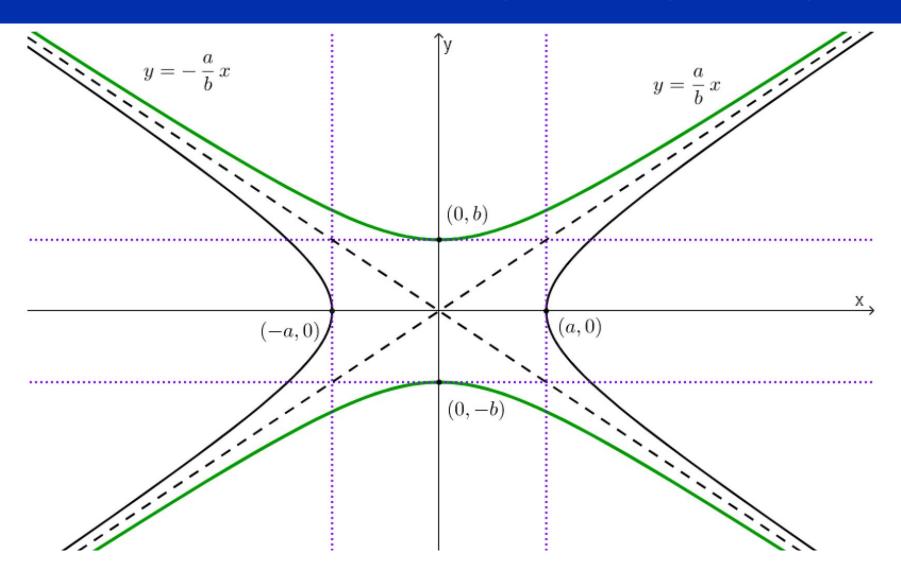
2. Гипербола $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ имеет асимптоты: $y = \pm \frac{b}{a}x$

https://www.desmos.com/calculator/u3aibc8kin

3. Гипербола, заданная уравнением $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ называется *сопряжённой* к гиперболе, заданной уравнением

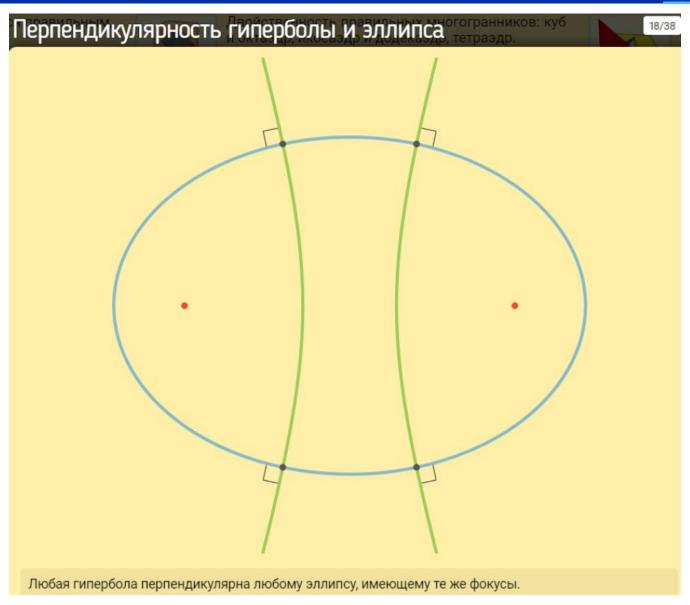
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

4. https://www.desmos.com/calculator/u3aibc8kin,

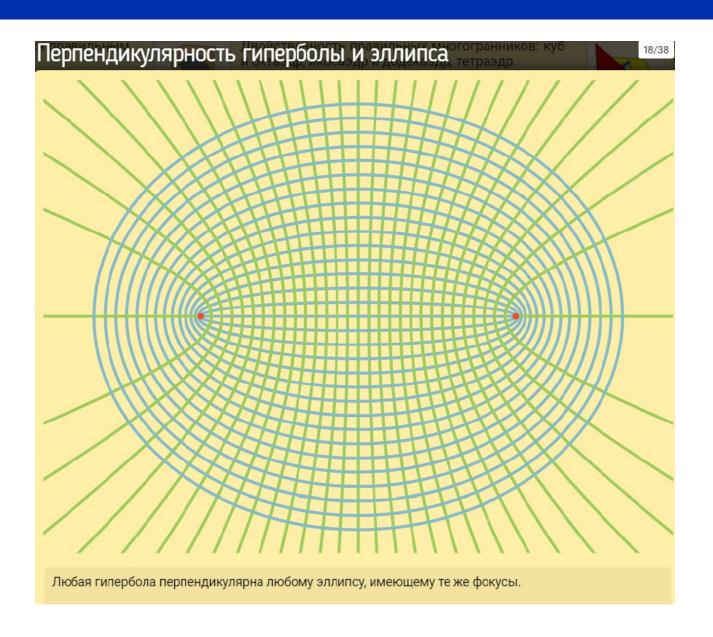


УНИВЕРСИТЕТ И<u>тимо</u>//www.etudes.ru/ru/sketches/hyperbola-ellipse-perpe

ndicularity/



Кривые 2-го порядка: гипербола



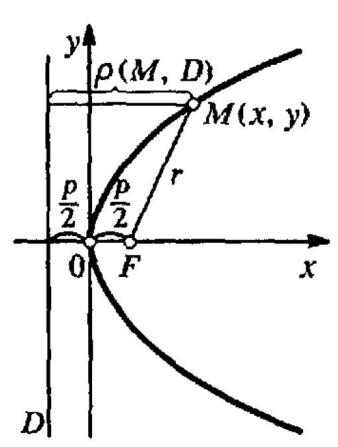
ОПРЕДЕЛЕНИЕ. Парабола — это Γ .М.Т. плоскости, равноудалённых от фиксированной точки F (называемой фокусом)и фиксированной прямой D (называемой директрисой).

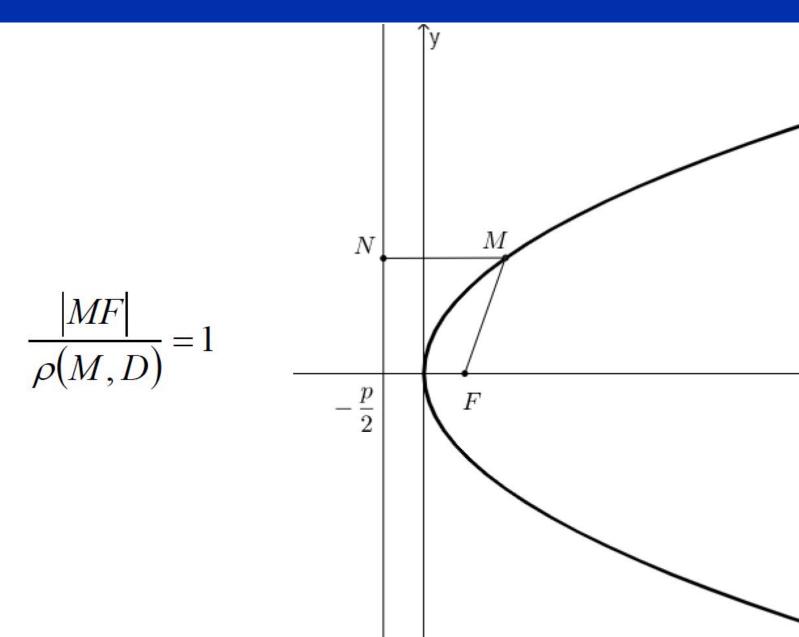
$$|MF| = \rho(M,D)$$

$$\sqrt{\left(x-\frac{p}{2}\right)^2+y^2}=\left|x+\frac{p}{2}\right|,$$

$$x^{2} - px + \frac{p^{2}}{4} + y^{2} = x^{2} + px + \frac{p^{2}}{4},$$
$$y^{2} = 2px$$

- каноническое уравнение параболы





Парабола - это Γ .М.Т, для которых отношение расстояния до фиксированной точки (фокуса) к расстоянию до фиксированной прямой (директрисы) есть величина постоянная, равная эксцентриситету $\varepsilon = 1$.

замечание.

- 1. Парабола может быть задана:
- а) параметрически:

$$\begin{cases} x = \frac{t^2}{2p} \\ y = t \end{cases}, \ t \in R$$

б) полярным уравнением:

$$r = \frac{p}{1 - \cos \theta}, \theta \in [0, 2\pi]$$

2. https://www.desmos.com/calculator/zjh134uccr

ОБЩЕЕ ГЕОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ для эллипса, гиперболы и параболы:

Г.М.Т плоскости для которых отношение расстояния до фиксированной точки (фокуса) к расстоянию до фиксированной прямой (директрисы) есть величина постоянная, равная эксцентриситету ε , есть эллипс (если $\varepsilon:0<\varepsilon<1$), гипербола (если $\varepsilon:\varepsilon>1$) или парабола (если $\varepsilon=1$).

ОБЩЕЕ ПОЛЯРНОЕ УРАВНЕНИЕ ЭЛЛИПСА, ГИПЕРБОЛЫ, ПАРАБОЛЫ

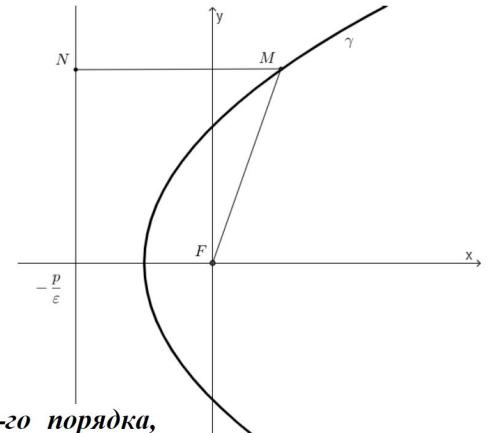
 $_{
m Paccmorpum}$ Оху и $Or\theta$:

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}.$$

- т. F фокус некоторой кривой 2-го порядка,(в полюсе-т. O),
- 1 директриса некоторой кривой 2-го порядка

$$\frac{\left|MF\right|}{\left|MN\right|} = \frac{r}{x + \frac{p}{\varepsilon}} = \frac{r}{r\cos\theta + \frac{p}{\varepsilon}} = \varepsilon,$$

$$r = \frac{p}{1 - \varepsilon \cos \theta}$$



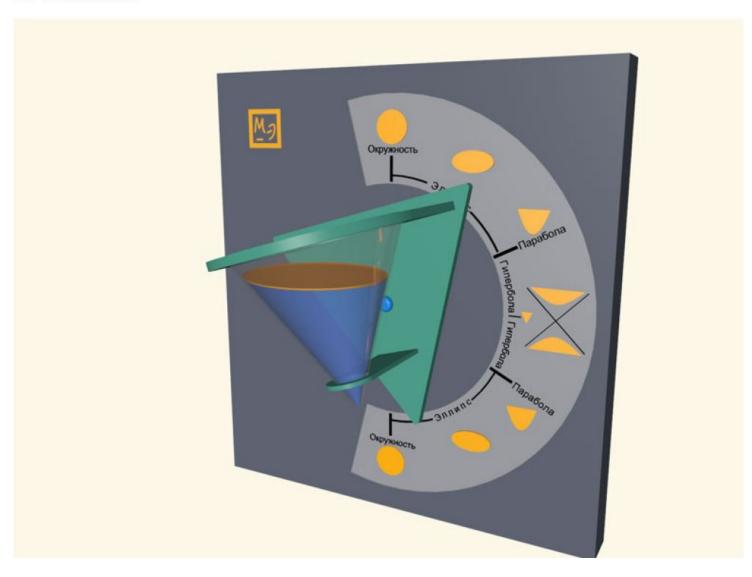
- полярное уравнение кривой 2-го порядка,

которое при $\varepsilon: 0 < \varepsilon < 1$ является эллипсом, при $\varepsilon: \varepsilon > 1$ гиперболой, при

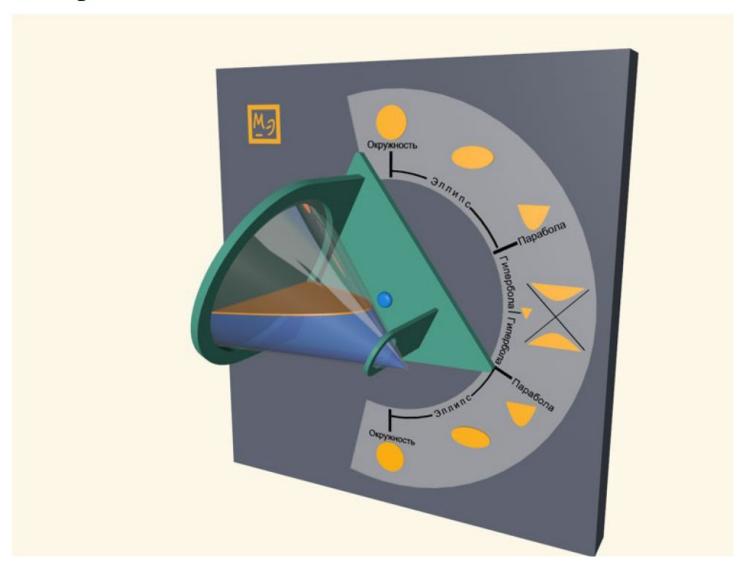
$$\varepsilon=1$$
 - параболой.

1. Окружность

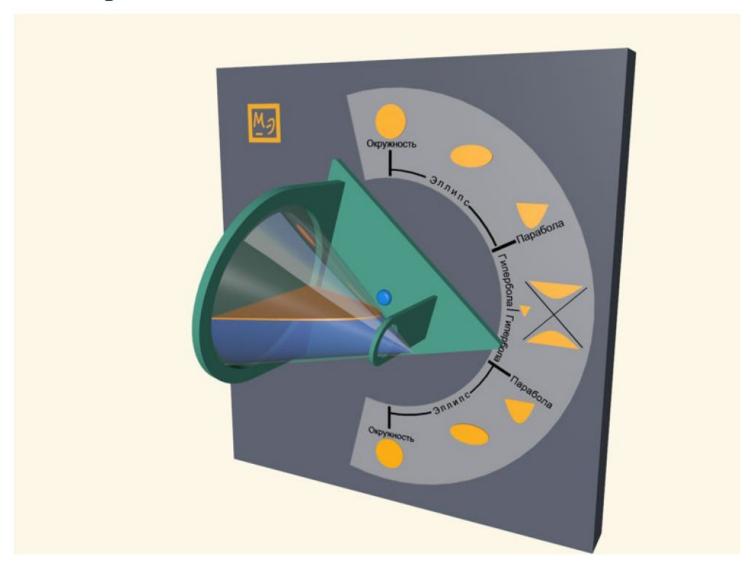
2. Эллипс



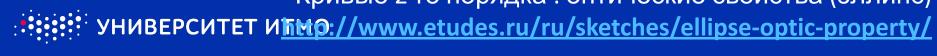
3. Парабола

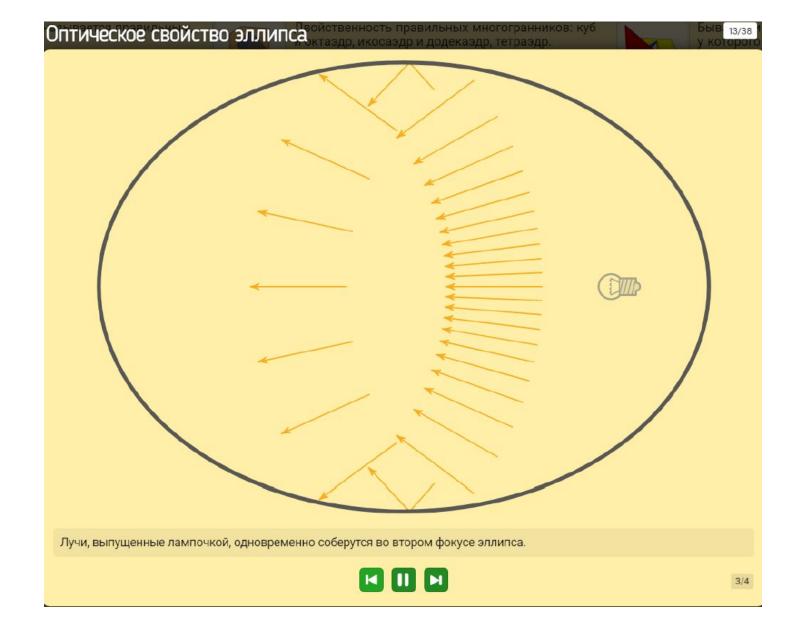


4. Гипербола

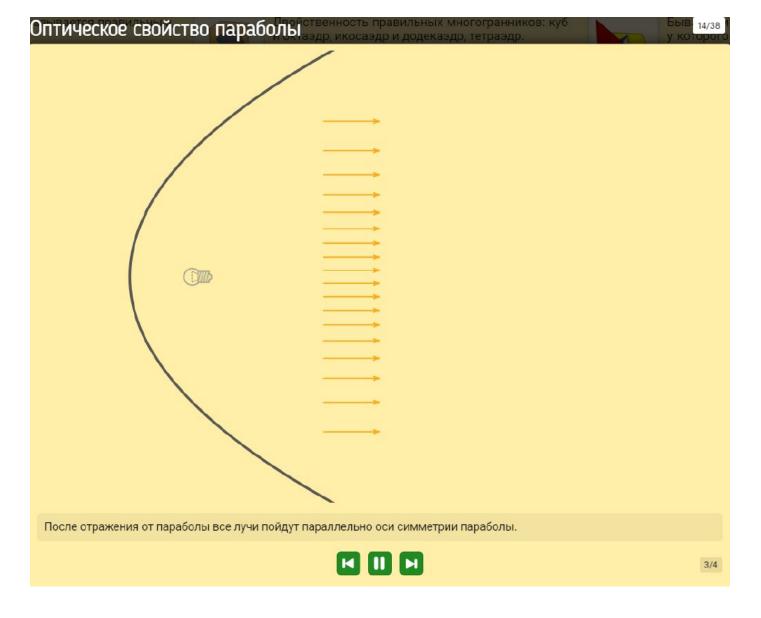


Кривые 2-го порядка : оптические свойства (эллипс)

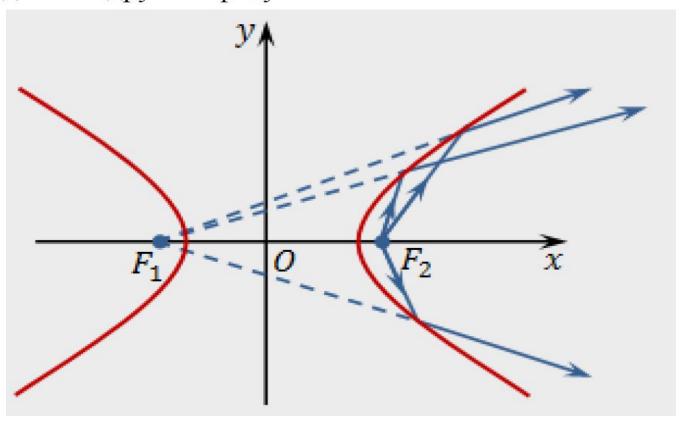




Кривые 2-го порядка : оптические свойства (парабола)



Свет от источника, находящегося в одном из фокусов гиперболы, отражается второй ветвью гиперболы таким образом, что продолжения отраженных лучей пересекаются во втором фокусе - т.е. если источник света находится в одном из фокусов гиперболического зеркала, то лучи света, отразившись от зеркала, расходятся так, как если бы они исходили из другого фокуса



Спасибо за внимание!