Assignment #2 20161137 복영규

#1

#2

> cor(Auto[,names(Auto)!="name"])

	mpg	cylinders	displacement	horsepower
mpg	1.0000000	-0.7776175	-0.8051269	-0.7784268
cylinders	-0.7776175	1.0000000	0.9508233	0.8429834
displacement	-0.8051269	0.9508233	1.0000000	0.8972570
horsepower	-0.7784268	0.8429834	0.8972570	1.0000000
weight	-0.8322442	0.8975273	0.9329944	0.8645377
acceleration	0.4233285	-0.5046834	-0.5438005	-0.6891955
year	0.5805410	-0.3456474	-0.3698552	-0.4163615
origin	0.5652088	-0.5689316	-0.6145351	-0.4551715
	weight	acceleratio	n year	origin
mpg	-0.8322442	0.423328	5 0.5805410	0.5652088
cylinders	0.8975273	-0.504683	4 -0.3456474	-0.5689316
displacement	0.9329944	-0.543800	5 -0.3698552	-0.6145351
horsepower	0.8645377	-0.689195	5 -0.4163615	-0.4551715
weight	1.0000000	-0.416839	2 -0.3091199	-0.5850054
acceleration	-0.4168392	1.000000	0 0.2903161	0.2127458
year	-0.3091199	0.290316	1 1.0000000	0.1815277
origin	0 5950054	0 212745	0 1015277	1 0000000

#3-1 > model = lm(mpg ~ cylinders, data = Auto) > summary(model) Call: $lm(formula = mpg \sim cylinders, data = Auto)$ Residuals: Min 10 Median 3Q Max -14,2413 -3,1832 -0,63322.5491 17.9168 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 42.9155 0.8349 51.40 <2e-16 *** cylinders -3.5581 0.1457 -24.43 <2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 4.914 on 390 degrees of freedom Multiple R-squared: 0.6047, Adjusted R-squared: 0.6037 F-statistic: 596.6 on 1 and 390 DF, p-value: < 2.2e-16# Simple linear regression model (mpg \sim cylinders) # Cylinders have statistically significant relationship to mpg in this model. # mpg = - 3.56 cylinders + 42.92 # 60.37% of variability of the mpg can be explained by this model.

#3-2

 $model = lm(mpg \sim . -name, data = Auto)$ > summary(model) Call: $lm(formula = mpg \sim .$ - name, data = Auto) Residuals: Median Min 10 30 Max -9.5903 - 2.1565 - 0.11691.8690 13.0604 Coefficients: Estimate Std. Error t value Pr(>|t|) -17.2184354.644294 -3.707 0.00024 30 30 30 (Intercept) 0.323282 -1.526cylinders -0.4933760.127800.0198960.007515 2.647 0.00844 displacement 0.013787 -1.2300.21963horsepower -0.016951-0.0064740.000652 -9.929 < 2e - 1636 36 36 weight acceleration 0.080576 0.098845 0.815 0.415480.750773 0.050973 14.729 < 2e - 16year 1,426141 0.2781365.127 4.67e-07 origin 26 26 26 Signif. codes: O '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 3.328 on 384 degrees of freedom Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16

Multiple linear regression model (mpg \sim . – name)

Displacement, weight, year and origin have statistically significant relationship to mpg in this model.

mpg = -0.49 cylinders + 0.02 displacement - 0.02 horsepower - 0.01 weight + 0.08 acceleration + 0.75 year + 1.43 origin - 17.22

81.82% of variability of the mpg can be explained by this model

#4

Residuals versus Fitted graph seems like U-shaped, that means mpg has non-linear relationship with other variables.

Residuals versus Leverage graph indicates unusually large outliers which standardized residuals value is higher than 2 or lower than -2 and unusually high leverage point which is labeled 14.

#My code

File Edit Code View Plots Session Build Debug Profile Tools Help

RStudio

– 0 ×

🝳 🔹 🥣 🖌 🔒 🚔 🕐 Go to file/function 👘 🛛 🖶 🔹 Addins 👻 💌 Project: (None) 🔻 Assignment #2.R* x ----Environment History $\neg \Box$ 📃 List 🕶 🛛 🚱 🗇 🖉 🔒 🔽 Source on Save 🔍 🌽 🔹 🔲 🔹 📑 Run 📑 📑 Source 👻 🚍 🕣 🔚 🖃 Import Dataset 🔹 📝 1 #1 Q Global Environment 🝷 2 install.packages("ISLR") Values 3 library("ISLR") 4 pairs(Auto) model List of 13 5 6 #2 7 cor(Auto[,names(Auto)!="name"]) 8 9 #3 10 model = $lm(mpg \sim cylinders, data = Auto)$ 11 summary(model) 12 model = $lm(mpg \sim . -name, data = Auto)$ 13 summary(model) 14 15 #4 16 par(mfrow = c(2,2))Files Plots Packages Help Viewer $\neg \Box$ plot(model) 17 💁 Publish 👻 🥥 🧼 🏐 🔎 Zoom 🛛 🚈 Export 🔹 👰 18 18:1 (Top Level) \$ R Script © residuals Residuals vs Fitted Normal Q-Q $\neg \Box$ Console C:/Users/YoungKyu/Desktop/경영통계분석/ 🔗 12 -9.5903 -2.1565 -0.1169 1.8690 13.0604 03888 Residuals ~ N 5 dized Coefficients: 2 N Estimate Std. Error t value Pr(>|t|) (Intercept) -17.218435 4.644294 -3.707 0.00024 *** 0.323282 -1.526 0.12780 10 20 -1 cylinders -0.49337615 25 30 35 St -3 -2 0 1 2 3 0.007515 2.647 0.00844 ** displacement 0.019896 -0.016951 0.013787 -1.230 0.21963 horsepower Fitted values Theoretical Quantiles weight -0.0064740.000652 -9.929 < 2e-16 *** acceleration 0.080576 0.098845 0.815 0.41548 0.050973 14.729 < 2e-16 *** 0.750773 year IStandardized residuals 1.426141 0.278136 5.127 4.67e-07 *** origin Scale-Location Residuals vs Leverage 2.0 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1 03270394 105 N 1.0 2 Residual standard error: 3.328 on 384 degrees of freedom Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182 F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16 N ok's distance 140 0.0 10 15 20 25 30 35 0.00 0.05 0.10 0.15 to > par(mfrow = c(2,2)) > plot(model) Fitted values Leverage > V