Objectives for Section 11.3 Derivatives of Products and Quotients

The student will be able to calculate:

- the derivative of a product of two functions, and
- the derivative of a quotient of two functions.

Barnett/Ziegler/Byleen Business Calculus 11e

Derivatives of Products

Theorem 1 (Product Rule)

If $f(x)=F(x) \cdot S(x)$, and if $F^{\prime}(x)$ and $S^{\prime}(x)$ exist, then

$$
f^{\prime}(x)=F(x) \cdot S^{\prime}(x)+F^{\prime}(x) \cdot S(x)
$$

or

$$
f^{\prime}(x)=F \frac{d S}{d x}+\frac{d F}{d x} S
$$

In words: The derivative of the product of two functions is the first function times the derivative of the second function plus the second function times the derivative of the first function.

Barnett/Ziegler/Byleen Business Calculus 11e

Example

Find the derivative of $y=5 x^{2}\left(x^{3}+2\right)$.

Barnett/Ziegler/Byleen Business Calculus 11 e

Example

Find the derivative of $y=5 x^{2}\left(x^{3}+2\right)$.

Solution:

Let $F(x)=5 x^{2}$, so $F^{\prime}(x)=10 x$
Let $S(x)=x^{3}+2$, so $S^{\prime}(x)=3 x^{2}$.
Then

$$
\begin{aligned}
f^{\prime}(x)= & F(x) \cdot S^{\prime}(x)+F^{\prime}(x) \cdot S(x) \\
& =5 x^{2} \cdot 3 x^{2}+10 x \cdot\left(x^{3}+2\right) \\
= & 15 x^{4}+10 x^{4}+20 x=25 x^{4}+20 x
\end{aligned}
$$

Barnett/Ziegler/Byleen Business Calculus 11e

Derivatives of Quotients

Theorem 2 (Quotient Rule)
If $f(x)=T(x) / B(x)$, and if $T^{\prime}(x)$ and $B^{\prime}(x)$ exist, then

$$
f^{\prime}(x)=\frac{B(x) \cdot T^{\prime}(x)-T(x) \cdot B^{\prime}(x)}{[B(x)]^{2}} \text { or } \quad \frac{d y}{d x}=\frac{B \frac{d T}{d x}-T \frac{d B}{d x}}{B^{2}}
$$

In words: The derivative of the quotient of two functions is the bottom function times the derivative of the top function minus the top function times the derivative of the bottom
 11e

Example

Find the derivative of $y=3 x /(2 x+5)$.

Barnett/Ziegler/Byleen Business Calculus 11e

Example

Find the derivative of $y=3 x /(2 x+5)$.

Solution:

Let $T(x)=3 x$, so $T^{\prime}(x)=3$
Let $B(x)=2 x+5$, so $B^{\prime}(x)=2$.
Then

$$
\begin{aligned}
& f^{\prime}(x)=\frac{B(x) \cdot T^{\prime}(x)-T(x) \cdot B^{\prime}(x)}{[B(x)]^{2}} \\
& =\frac{(2 x+5) \cdot 3-3 x \cdot 2}{(2 x+5)^{2}}=\frac{15}{(2 x+5)^{2}}
\end{aligned}
$$

Barnett/Ziegler/Byleen Business Calculus 11e

Tangent Lines

Let $f(x)=(2 x-9)\left(x^{2}+6\right)$. Find the equation of the line tangent to the graph of $f(x)$ at $x=3$.

Barnett/Ziegler/Byleen Business Calculus 11e

Tangent Lines

Let $f(x)=(2 x-9)\left(x^{2}+6\right)$. Find the equation of the line tangent to the graph of $f(x)$ at $x=3$.

Solution: First, find $f^{\prime}(x)$:

$$
f^{\prime}(x)=(2 x-9)(2 x)+(2)\left(x^{2}+6\right)
$$

Then find $f(3)$ and $f^{\prime}(3)$:

$$
f(3)=-45 \quad f^{\prime}(3)=12
$$

The tangent has slope 12 and goes through the point (3, -45).
Using the point-slope form $y-y_{1}=m\left(x-x_{1}\right)$, we get
Barnett/ZiAg)er/By(een3Business)Calchaus81
11e

Summary

Product Rule:

$$
\frac{d}{d x}(F(x) \cdot S(x))=F^{\prime}(x) \cdot S(x)+F(x) \cdot S^{\prime}(x)
$$

Quotient Rule:

$$
\frac{d}{d x}\left(\frac{T(x)}{B(x)}\right)=\frac{B(x) \cdot T^{\prime}(x)-T(x) \cdot B^{\prime}(x)}{[B(x)]^{2}}
$$

Barnett/Ziegler/Byleen Business Calculus 11 e

