

NUFYP Mathematics & Computing Science **Pre-Calculus course**

1.5 Basic transformations of graphs

Lecture slides prepared by: Viktor Ten

Lecture overview: learning outcomes

At the end of this lecture, you should be able to:

- **1.5.1** Sketch the graph of a cubic function given in factorized form.
- **1.5.2** Apply a horizontal translation to a given curve.
- **1.5.3** Apply a vertical translation to a given curve.
- **1.5.4** Apply a vertical stretch to a given curve.
- **1.5.5** Apply a horizontal stretch to a given curve.
- **1.5.6** Apply simple combined transformations to a given curve.

NAZARBAYEV

Foundation Year Program

1.5.1: Sketch the graph of cubic function given in factorized form.

Example 1 Sketch curve with equation $y=x^3$

Put y = 0 and solve for x.

As the curve passes the axes at only one point, find its shape by plotting a few points.

Notice that as x increases, y increases rapidly.

The curve is 'flat' at (0, 0). This point is called a point of inflexion. The gradient is positive just before (0, 0) and positive just

Notice that the shape of this curve is the same as the curve with equation $y = (x + 1)^3$, which is shown in Example 5.

Example 2 Sketch the curve with equations: **a**. $y = -x^3$ **b**. $y = (x + 1)^3$ Show their position relative to the curve with equation $y = x^3$

You do not need to plot any points. It is quicker if you realise the curve $y = -x^3$ is a reflection in the x-axis of the curve $y = x^3$. You can check this by looking at the values used to sketch $y = x^3$. So, for example, x = 2will now correspond to y = -8 on the curve $y = -x^3$.

The curve is still flat at (0, 0).

Put y = 0 to find where the curve crosses the *x*-axis.

Put x = 0 to find where the curve crosses the *y*-axis.

The curve has the same shape as $y = x^3$.

You do not need to do any working if you realise the curve $y = (x + 1)^3$ is a translation of -1 along the x-axis of the curve $y = x^3$.

The point of inflexion is at (-1, 0).

Example 2A Sketch the curve with the equation y = (x - 2)(x - 1)(x + 1)

Foundation Year Program

Transformations

We will now consider four elementary transformations and some simple combined transformations.

- 1. $f(x) \rightarrow f(x+a)$
- 2. $f(x) \rightarrow f(x)+a$

4. $f(x) \rightarrow af(x)$

- 3. $f(x) \rightarrow f(ax)$
- Translation (x-axis)
- Translation (y-axis)
- Scaling (stretching)(x-axis)
 - Scaling (stretching)(y-axis)

1.5.2. Horizontal f(**transfation**

6

a)

15-

10-

5

0

-5 -

 $f(x)=x^2-4$

.....

S

 $g(x) = (x-2)^2 - 4$

- Moves to the left if a>0.
- Moves to the right if a<0.

3

r

 $\mathbf{>}$

1.5.3. Vertical translation

- Shape is unchanged.
- Moves upwards if a>0.
- Moves downwards if a<0.

NAZARBAYEV

a
$$f(x) = x^2$$
 b $g(x) = (x - 2)^2$ **c** $h(x) = x^2 + 2$

Here a = +2 so h(x) is a vertical translation of +2 along the *y*-axis.

Here a = -2 so g(x) is a horizontal translation of -(-2) = +2 along the x-axis.

2017-18

- **a** Given that **i** $f(x) = x^3$ **ii** g(x) = x(x 2),
 - sketch the curves with equation y = f(x + 1) and g(x + 1) and mark on your sketch the points where the curves cross the axes.
- *** b** Given that $h(x) = \frac{1}{x}$, sketch the curve with equation y = h(x) + 1 and state the equations of any asymptotes and intersections with the axes.

First sketch f(x).

Here a = +1 so it is a horizontal translation of -1 along the *x*-axis.

In this case the new equations can easily be found as $y = (x + 1)^3$ and this may help with the sketch.

The curve crosses the <i>x</i> -axis once.
$y = h(x) + 1 = \frac{1}{x} + 1$
$O = \frac{1}{r} + 1$
$-1 = \frac{1}{r}$
x = -1
So the curve intersects the x-axis
at (-1, 0).
The horizontal asymptote is $y = 1$.
The vertical asymptote is $x = 0$.

Put y = 0 to find where the curve crosses the *x*-axis.

1.5.4. Vertical stretch

- Roots unchanged
- Axis of symmetry unchanged
- Intercept at (0, c) is transformed to (0, ac)
- If a < 0, the branches of transformed curve are reoriented from upward to downward or vice versa from original.

$$h(x) = -0.5(x^2 - 4)$$

1.5.5 Horizontal stretch

Even power. Location of roots changes if |a|≠1. Axis of symmetry unchanged.

Odd power.

Example 5

Given that $f(x) = 9 - x^2$, sketch the curves with equations: **a** y = f(2x) **b** y = 2f(x)

a
$$f(x) = 9 - x^2$$

So $f(x) = (3 - x)(3 + x)$
The curve is $y = (3 - x)(3 + x)$
 $0 = (3 - x)(3 + x)$
So $x = 3$ or $x = -3$
So the curve crosses the x-axis at
 $(3, 0)$ and $(-3, 0)$.
When $x = 0, y = 3 \times 3 = 9$
So the curve crosses the y-axis at
 $(0, 9)$.

You can factorise the expression.

Put y = 0 to find where the curve crosses the *x*-axis.

Put x = 0 to find where the curve crosses the y-axis.

y = af(x) where a = 2 so it is a vertical stretch with scale factor 2.

Check: The curve is y = 2f(x). So y = 2(3 - x)(3 + x). When y = 0, x = 3 or x = -3. So the curve crosses the x-axis at (-3, 0) and (3, 0). When x = 0, $y = 2 \times 9 = 18$. So the curve crosses the y-axis at (0, 18).

NAZARBAYEV UNIVERSITY

Step 1 Horizontal translation of -5.

Step 2

Vertical stretch, scale factor 2.

Notice what happens to a point such as $(-4, 1) \dots$ It goes to (-4, 2).

Example 8

The diagram shows a sketch of the graph of y = f(x). The curve passes through the origin *O*, the point A(2, -1) and the point B(6, 4).

Sketch the graph of:

a
$$y = 2f(x) - 1$$

b $y = f(x + 2) + 2$
c $y = \frac{1}{4}f(2x)$
d $y = -f(x - 1)$

In each case, find the coordinates of the images of the points *O*, A and B.

NAZARBAYEV UNIVERSITY

Vertical stretch, scale factor 2.

Vertical stretch, scale factor 2, then a vertical translation of -1.

Horizontal translation of 1.

Horizontal translation of 1, then a vertical stretch, scale factor -1.

A 'vertical stretch with scale factor -1' is equivalent to a reflection in the *x*-axis.

In this lecture, we covered

- **1.5.1** Sketch the graph of a cubic function given in factorized form.
- **1.5.2** Apply a horizontal translation to a given curve.
- **1.5.3** Apply a vertical translation to a given curve.
- 1.5.4 Apply a vertical stretch to a given curve.
- **1.5.5** Apply a horizontal stretch to a given curve.
- **1.5.6** Apply simple combined transformations to a given curve.

Next lecture

1.6 Simultaneous equations

Material in some of these slides has been reproduced from:

- 1) Attwood, G., Macpherson, A., Moran, B., Petran, J., Pledger, K., Staley, G. and Wilkins, D. (2008), Edexcel AS and A Level Modular Mathematics series C1, Pearson, Harlow, UK.
- 2) Attwood, G., Macpherson, A., Moran, B., Petran, J., Pledger, K., Staley, G. and Wilkins, D. (2008), Edexcel AS and A Level Modular Mathematics series C3, Pearson, Harlow, UK.