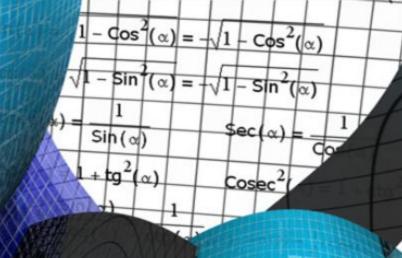


Дискретная математика



Ларионов Владимир Борисович E – mail: vb_larionov@mti.edu.ru

Отношения — один из способов задания взаимосвязей между элементами множества. Наиболее часто используют унарные и бинарные отношения.

Унарные (одноместные) отношения отражают наличие определенного свойства R у элементов некоторого множества A (например, «быть студенткой» среди множества всех студентов).

Способ задания унарных отношений в памяти ЭВМ- упорядочить элементы конечного универсума и подмножеству, задающему унарное отношение, поставить в соответствие его характеристический вектор. В памяти ЭВМ такое представление является двоичным кодом. Пример показан в табл. 1.3.

Универсум, «группа»	Иванова	Петров	Сидоров	Кузькина	Моськин	Битов
Унарное отношение «отличник», список	Иванова		Сидоров			Битов
Унарное отношение «отличник», характеристический вектор	1	0	1	0	0	1

Действия над отношениями на множествах

Операции над унарными отношениями. Поскольку унарное отношение определяется подмножеством универсума U, то и операции над такими отношениями сводятся к операциям над множествами:

1. Объединение
$$R_1 \cup R_2 = \{ a \in R_1 \ uлu \ a \in R_2 \}.$$

Например, R_1 – «быть отличником», R_2 – «быть хорошистом». Тогда унарное отношение $R = R_1 \cup R_2$ – «учиться хорошо».

2. Пересечение
$$R_1 \cap R_2 = \{a \in R_1 \ u \ a \in R_2 \}.$$

Например, пусть R_3 — унарное отношение «учиться на бюджете». Тогда, с учетом предыдущего примера, отношение R — «получать стипендию» можно записать так:

$$R = (R_1 \cup R_2) \cap R_3$$
 — «учиться хорошо и учиться на бюджете».

В памяти ЭВМ составные унарные отношения можно определять как логические операции над соответствующими им характеристическими векторами. Пример показан в табл. 1.4

Пример: унарные отношения, представленные двоичным кодом

Универсум, «группа»	Иванова	Петров	Сидоров	Кузькина	Моськин	Битов
Унарное отношение «отличник», список	Иванова		Сидоров			Битов
Унарное отношение «отличник», R ₁ , характеристический вектор	1	0	1	0	0	1
Унарное отношение «хорошист», R ₂ , характеристический вектор	0	1	0	0	1	0
Унарное отношение «учиться хорошо», $R_1 \cup R_2$, характеристический вектор	1	1	1	0	1	1
Унарное отношение «быть на бюджете», R ₃ , характеристиче- ский вектор	1	0	1	1	1	0
Унарное отношение «получать стипендию», $ (R_1 \cup R_2) \cap R_3, $ характеристический вектор	1	0	1	0	1	0

Бинарные отношения

Бинарные (двухместные) отношения используются для определения взаимосвязей, которыми характеризуются пары элементов во множестве А («дружить», «любить», «быть моложе», «быть сыном», «быть подчиненным» — примеры бинарных отношений на множестве людей). Из школьной математики известны бинарные отношения (их в школе так и называли:

Прямым (декартовым) произведением двух множеств A и B называется множество упорядоченных пар, в котором первый элемент каждой пары принадлежит множеству A, а второй элемент принадлежит B:

Например, пусть $A = \{1, 2\}, B = \{1, 3, 4\}.$ Тогда $A \times B = \{(1, 1), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4)\}.$ Геометрическое представление этого множества

$$A \times B = \{(a, b) | a \in A, b \in B\}.$$

Определение бинарных отношений

Бинарное отношение. Пусть A и B − два множества. *Бинарным* (двухместным) отношением R называется подмножество пар $(a, b) \in R$ прямого произведения $A \times B$, то есть $R \subseteq A \times B$. Если элементы a и b находятся в отношении R, то это записывают так: a R b.

Если A = B, то говорят, что R есть отношение на множестве A:

$$R \subset A \times A$$
.

Обычно рассматривают бинарные отношения, заданные на одном множестве.

Замечание. Аналогично можно определить и 3-арные и вообще *п*-арные отношения, но в силу того, что информация в ЭВМ в основном подается в виде одномерного массива (вектора) и двумерного массива (матрицы), мы ограничимся бинарными отношениями.

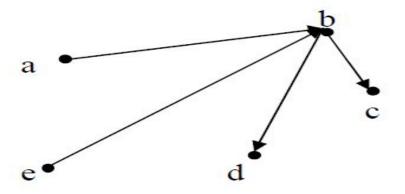
Способы задания бинарных отношений

Задание бинарных отношений в памяти ЭВМ. Бинарное отношение R — это подмножество декартового произведения $R \subset A \times A$. Его можно задавать следующими способами:

1. Списком (перечислением) пар, на которых это отношение выполняется.

Например, на множестве $A = \{a, b, c, d, e\}$ списком задано отношение $R = \{(a, b), (b, c), (e, b), (b, d)\}.$

2. Ориентированным графом. Наличие отношения между элементами а *R b* отображают стрелкой, которая проведена из вершины *a* в вершину *b*. Например, приведенное выше отношение *R* можно задать графом:



3. Характеристической матрицей (двумерным массивом), состоящей из нулей и единиц:

$$||R|| = R[a,b] =$$

$$\begin{cases} 1, \text{ если } a R b, \\ 0, \text{ если } a \overline{R} b. \end{cases}$$

Например, приведенное выше отношение R можно задать характеристической матрицей:

$$\|R\| = \begin{cases} a & b & c & d & e \\ b & 0 & 1 & 0 & 0 & 0 \\ b & 0 & 0 & 1 & 1 & 0 \\ c & 0 & 0 & 0 & 0 & 0 \\ d & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 1 & 0 & 0 & 0 \end{cases}.$$

2.2. Действия над бинарными отношениями

Операции над бинарными отношениями. Поскольку отношения— это подмножества декартового произведения $R \subset A \times A$, то для них определены те же операции, что и операции над множествами.

1. Объединением отношений является отношение

$$R = R_1 \cup R_2 = \{(a,b) \mid (a,b) \in R_1 \text{ или } (a,b) \in R_2 \}.$$

Построить отношение $R = R_1 \cup R_2$ можно, объединив соответствующим образом списки отношений R_1 и R_2 как подмножества или построив граф объединенного отношения.

Чтобы получить характеристическую матрицу объединенного отношения $\|R\| = \|R_1 \cup R_2\|$, необходимо логически сложить характеристические матрицы $\|R_1\|$ и $\|R_2\|$.

Примеры решения задач (объединение отношений)

Пример 1.2.1. Отношения заданы списком: $R_I = \{(a, b), (b, c), (e, b), (e, a)\}, R_2 = \{(a, b), (a, d), (d, e), (d, c), (c, b), (e, a)\}.$ Определить отношение $R = R_1 \cup R_2$.

Решение. Построим характеристические матрицы отношений R_1 и R_2 :

$$\|R_1\| = \begin{cases} a & b & c & d & e \} \\ b & 0 & 1 & 0 & 0 & 0 \\ c & 0 & 0 & 1 & 0 & 0 \\ d & 0 & 0 & 0 & 0 & 0 \\ e & 1 & 1 & 0 & 0 & 0 \end{cases}, \quad \|R_2\| = \begin{cases} a & b & c & d & e \} \\ a & b & c & d & e \} \\ b & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ d & e & 1 & 0 & 0 & 0 & 0 \end{cases}.$$

Характеристическая матрица отношения $R = R_1 \cup R_2$ равна логической сумме характеристических матриц R_1 и R_2 .

Получим, что $R = R_1 \cup R_2 = \{(a, b), (a, d), (b, c), (c, b), (d, c), (d, e), (e, a), (e, b)\}.$

Примеры решения задач (пересечение отношений)

2. Пересечением отношений является отношение:

$$R = R_1 \cap R_2 = \{(a,b) \mid (a,b) \in R_1 u(a,b) \in R_2 \}.$$

Построить отношение $R = R_1 \cap R_2$ можно пересечением списков отношений R_1 и R_2 , рассматриваемых как подмножества.

Чтобы получить характеристическую матрицу отношения $R=R_1\cap R_2$, необходимо поэлементно логически перемножить характеристические матрицы $\|R_1\|$ и $\|R_2\|$.

Пример 1.2.2. Используя отношения R_1 и R_2 из примера 1.2.1, найти отношение $R=R_1\ \cap\ R_2$.

Решение:

$$R_1 = \{(a, b), (b, c), (e, b), (e, a)\},\$$

 $R_2 = \{(a, b), (a, d), (d, e), (d, c), (c, b), (e, a)\}.$

Построим характеристические матрицы отношений R_1 и R_2 .

$$\|R_1\| = \begin{cases} a & b & c & d & e \} \\ b & 0 & 1 & 0 & 0 & 0 \\ c & 0 & 0 & 0 & 0 & 0 \\ d & e & 1 & 1 & 0 & 0 & 0 \end{cases}, \quad \|R_2\| = \begin{cases} a & b & c & d & e \} \\ a & b & c & d & e \} \\ b & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ d & e & 1 & 0 & 0 & 0 & 0 \end{cases}.$$

Характеристическая матрица отношения $R = R_1 \cap R_2$ равна логическому произведению характеристических матриц R_1 и R_2 .

Получим, что $R = R_1 \cap R_2 = \{(a, b), (e, a)\}.$

Примеры решения задач (композиция отношений)

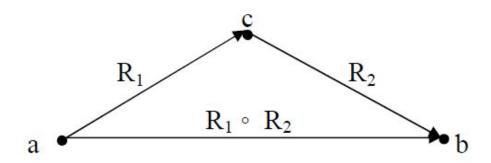
3. Композиция отношений. Пусть $R_1 \subset A \times C$ — отношение из A в C, а $R_2 \subset C \times B$ — отношение из C в B.

Композицией двух отношений $R = R_1 \circ R_2$ называется отношение $R \subset A \times B$ из A в B, определяемое следующим образом:

$$R = R_1 \circ R_2 = \{(a,b) \mid a \in A \ u \ b \in B, u \ cywecmbyem \ c \in C,$$
 такое, что а $R_1 c \ u \ c R_2 b\}$

Композиция отношений на множестве А является отношением на множестве А.

Приведенное выше определение композиции можно трактовать как установление отношения между элементами a и b через обязательно существующего «посредника» c:



Чтобы получить характеристическую матрицу отношения $R = R_1 \circ R_2$, необходимо перемножить характеристические матрицы $\|R_1\|$ и $\|R_2\|$ по правилу перемножения матриц (строка на столбец), но под «суммой» и «произведением» подразумевать логические «сумму» и «произведение», то есть $r[i,j] = \sum\limits_{k=1}^n r_1[i,k] \times r_2[j,k]$.

Пример 1.2.3. Используя отношения R_1 и R_2 из примера 1.2.1, найти отношение $R = R_1 \circ R_2$.

Решение:

$$R_1 = \{(a, b), (b, c), (e, b), (e, a)\},\$$

 $R_2 = \{(a, b), (a, d), (d, e), (d, c), (c, b), (e, a)\}.$

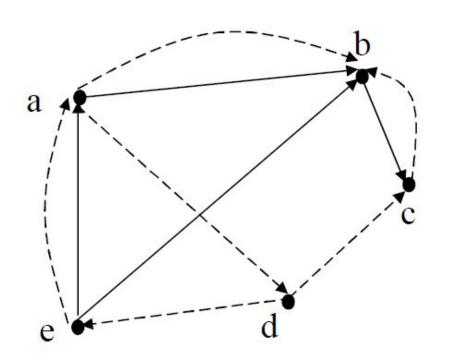
Построим характеристические матрицы отношений R_1 и R_2 .

$$\|R_1\| = \begin{cases} a & b & c & d & e \\ b & 0 & 1 & 0 & 0 & 0 \\ c & 0 & 0 & 1 & 0 & 0 \\ d & 0 & 0 & 0 & 0 & 0 \\ e & 1 & 1 & 0 & 0 & 0 \end{cases}, \quad \|R_2\| = \begin{cases} a & b & c & d & e \\ a & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ c & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ e & 1 & 0 & 0 & 0 & 0 \end{cases}.$$

Построим характеристическую матрицу отношения $R = R_1 \circ R_2$:

Получим, что $R = R_1 \circ R_2 = \{(b, b), (e, b), (e, d)\}.$

Замечание. Чтобы увидеть, что отношение $R = R_1 \circ R_2$ устанавливается через «посредника», изобразим совместно ориентированные графы отношений R_1 и R_2 . При этом отношения на R_1 будем обозначать «→», отношения на R_2 будем обозначать «--→»:



«Посредник»

b → c ---→ b

e → a ---→ b

e → a ---→ d

Упражнения для самостоятельной работы

Задано универсальное множество U и множества A, B, C и D. (см. таблица 1)

Выполнить задание двумя способами:

- а) вычислить элементы результирующего множества, используя непосредственно операции над множествами;
- б) сформировать характеристические векторы для исходных множеств и получить результирующее множество, используя действия над характеристическими векторами.

Сравнить результаты.

Таблица 1.

Вариант	Дано	Найти
1	$U = \{-15, -14, -13, -12, -11\},\$ $A = \{-15, -13, -12, \}; B = \{-14, -12, -11\};\$ $C = \{-15, -11, \}; D = \{-12\}$	$A \cup \overline{C};$ $(B \cup C) \setminus (A \setminus D);$ $(U \setminus C) \cap A$
2	$U = \{a, b, c, d, e\}, A = \{a, b, c\}; B = \{b, c, d\};$ $C = \{a, e\}; D = \{d\}$	$\overline{A \cap B}$; $(B \setminus D) \setminus (A \cup C)$; $(U \setminus B) \cup D$
3	$U = \{1, 2, 3, 4, 5\}; A = \{1, 3, 5\}; B = \{2, 4\};$ $C = \{2, 3, 4\}; D = \{5\}.$	$\overline{\overline{A} \cap \overline{D}};$ $((A \setminus C) \setminus D) \cup B;$ $(U \setminus A) \cup D.$

Таблица 1. продолжение

4	$U = \{2, 4, 6, 8, 10\}, A = \{2, 4\}; B = \{4, 6, 8\};$ $C = \{2, 6, 10\}; D = \{4\}.$	$A \cap \overline{D};$ $(B \setminus C) \cap D;$ $(A \setminus B) \cap (U \setminus D).$
5	$U = \{x, y, z, t, u\}, A = \{t\}; B = \{x, u\};$ $C = \{x, y, z\}; D = \{y, t\}.$	$C \cup \overline{D};$ $(A \cup C) \setminus B;$ $(U \setminus A) \setminus \overline{B}.$
6	$U = \{-10, -5, 5, 10, 15\}, A = \{-10, 10\};$ $B = \{-5, 5, 15\}; C = \{5, 10, 15\}; D = \{5\}.$	$A \cap \overline{B};$ $\overline{D \cap C} \setminus A;$ $U \cap (B \setminus \overline{D}).$

Таблица 1. продолжение

7	$U = \{10, 11, 12, 13, 14\}, A = \{10, 11, 12\};$ $B = \{12, 13, 14\}; C = \{10, 14\}; D = \{12\}.$	$(B \cup A) \setminus \overline{C}; \overline{B \cup D};$ $(U \setminus (B \cap C)) \setminus D.$
8	$U = \{a, b, c, d, e, f, g\}, A = \{a, b, c, d\},$ $B = \{c, d, e, f, g\}, C = \{d, e, f\}, D = \{f, g\}.$	$(U \setminus A) \setminus B;$ $C \cap \overline{D}; \overline{A} \cap \overline{C}.$
9	$U = \{1, 2, 3, 4, 5, 6, 7\},\$ $A = \{1, 2, 3, 4\}; B = \{4, 5, 6, 7\}; C = \{2, 4, 6\};\$ $D = \{2, 4\}.$	$(B \cup D) \setminus (A \cap C);$ $\overline{D \cup \overline{C}}; (U \setminus \overline{A}) \setminus \overline{D}.$
10	$U = \{1, 3, 4, 5, 7, 9\}, A = \{1, 3, 9\}; B = \{5, 7, 9\};$ $C = \{4, 5\}; D = \{9\}.$	$(U \setminus D) \setminus C;$ $(\overline{C \setminus B}) \cup A; A \cap D.$