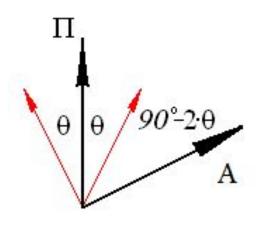
Двулучепреломление.

- Оптическая ось.
- Двулучепреломление.
- Двулучепреломление в одноосном кристалле.
- Линейно поляризованная волна в одноосном кристалле.
- Эллиптичность волны
- Случай изотропной среды

Магнитооптические материалы.

- Магнитооптическая добротность
- Пленки ферритов-гранатов.
 - ✓ Выращивание
 - ✓ Магнитооптические свойства
 - ✓ Эффект Фарадея в двухподрешеточном ферримагнетике
- Ортоферриты
- Борат железа

Магнитооптическая добротность



I – интенсивность света, прошедшего через пластинку толщиной z,

Іо – интенсивность падающего света,

α – коэффициент поглощения,

ф – угол «падения».

$$I = I_o e^{-\alpha z} \cos^2 \varphi$$

$$I = I_o e^{-\alpha \cdot z} \cos^2 \varphi = I_o e^{-\alpha \cdot z} \cos^2 \left(\frac{\pi}{2} - 2\theta\right) = I_o e^{-\alpha \cdot z} \sin^2 \left(2\theta_F z\right)$$

 $\theta_{\scriptscriptstyle F}$ – удельное фарадеевское вращения.

Выберем оптимальную толщину образца, чтобы интенсивность свет, проходящего через него, была максимальной.

$$\frac{\partial I}{\partial z} = I_o \left(-\alpha \cdot e^{-\alpha \cdot z} \sin^2(2\theta_F z) + 2\sin(2\theta_F z) \cdot \cos(2\theta_F z) \cdot 2\theta_F \cdot e^{-\alpha \cdot z} \right)$$

$$\frac{\partial I}{\partial z} = 0$$

$$-\alpha \cdot \sin(2\theta_E z) + 4 \cdot \theta_E \cos(2\theta_E z) = 0$$

$$z = \frac{1}{2\theta_F} arctg \left(\frac{4 \cdot \theta_F}{\alpha} \right)$$
 - оптимальная толщина образца

- магнитооптическая добротность

$$\boxed{\frac{spad\cdot cM}{cM} = spad}$$

Вычислим интенсивность света, прошедшего через образец при оптимальной толщине образца.

$$I = I_o e^{-\alpha \cdot \frac{1}{2\theta_F} arctg \left(\frac{4 \cdot \theta_F}{\alpha}\right)} \sin^2 \left(2\theta_F \cdot \frac{1}{2\theta_F} arctg \left(\frac{4 \cdot \theta_F}{\alpha}\right)\right) =$$

$$= I_o e^{-\frac{\alpha}{2\theta_F} arctg \left(\frac{4 \cdot \theta_F}{\alpha}\right)} \sin^2 \left(arctg \left(\frac{4 \cdot \theta_F}{\alpha}\right)\right) =$$

$$= I_o e^{-\frac{\alpha}{2\theta_F} arctg \left(\frac{4 \cdot \theta_F}{\alpha}\right)} \frac{4 \cdot \theta_F}{\alpha} = f \left(\frac{2 \cdot \theta_F}{\alpha}\right) \frac{1}{1 \cdot I_o}$$
Эта интенсивность – функция добротности

Прозрачные ферромагнетики: ферриты-гранаты, ортоферриты и борат железа.

Нельсон и Дирборн [Neilson J.W., Dearborn E.F. Physics Chem. Solids, 5, 202 (1958)] вырастили монокристаллы непроводящего железоиттриевого граната $Y_3Fe_5O_{12}$. Примерно в то же время были выращены кристаллы ортоферрита иттрия YFeO $_3$.

Борат железа FeBO₃ известен с 1963 г. Свойства исследованы в 1975.

Эти материалы прозрачные в видимой и ИК области спектра и обладают большим удельным фарадеевским вращением.

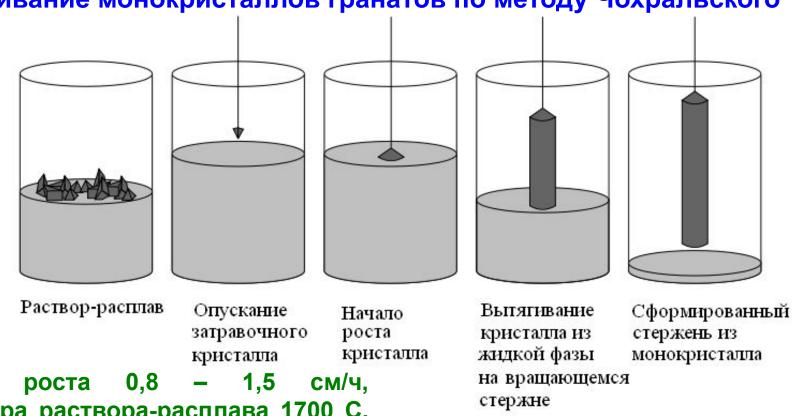
Ферриты-гранаты Технология изготовления ЦМД чипа

- Изготовление самих подложек из массивных кристаллов
- ✓ Выращивание магнитных цмд пленок на подложках
- Обработка цмд пленок (например, ионная имплантация для подавления жестких цмд)
- ✔ Создание управляющих структур на цмд пленке
- Разрезание полученных пластин на одиночные приборные чипы.

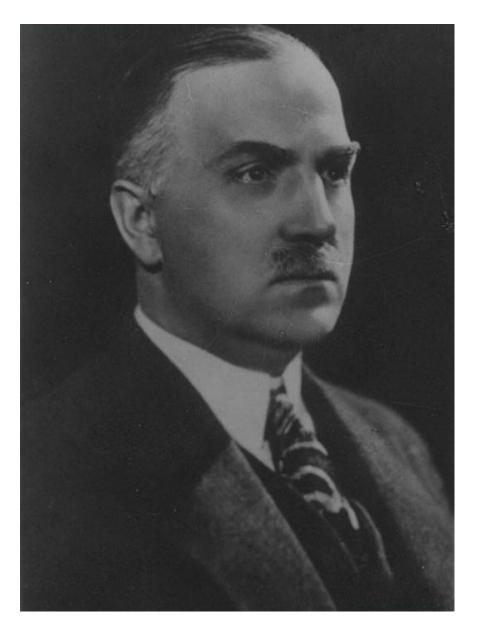
Выращивание подложек

(немагнитная и монокристаллическая, твердая, плоская, гладкая, бездефектная, обладать малой электропроводностью и большой теплоемкостью, постоянная решетки подложки должна быть близка к постоянной решетки пленки)

Выращивание монокристаллов гранатов по методу Чохральского



Скорость роста 0,8 – 1,5 см/ч, температура раствора-расплава 1700 C, скорость вращения 20-25 об/мин.



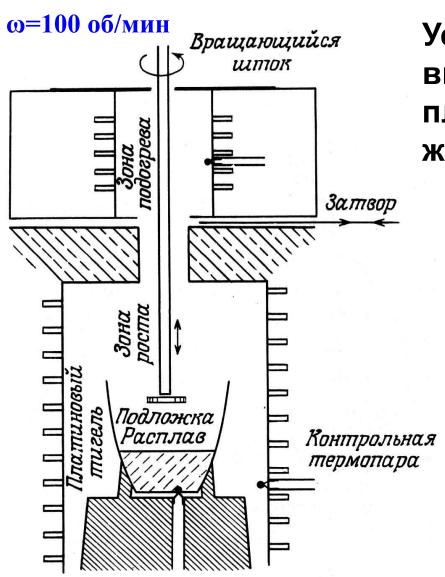
Ян Чохральский (1885 - 1953) польский химик, изобретатель широко известного в настоящее время метода выращивания монокристаллов из расплава путём вытягивания их вверх от свободной поверхности, названного впоследствии его именем.

Подготовка подложки.

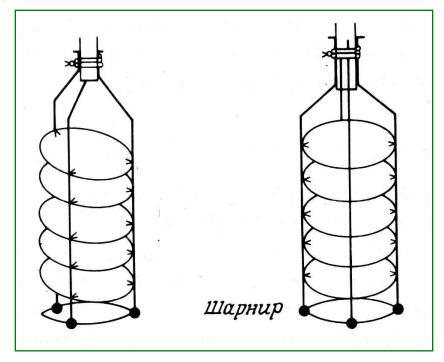
Для получения из монокристаллической були законченной подложки необходимо выполнить операции:

- С помощью оптического контроля определить ориентацию
- Разрезать булю на пластинки
- Отполировать их поверхность: сначала механически, а потом химически (горячей фосфористой кислотой). При полировке снимается около 120 мкм.

Выращивание пленок.



Установка для выращивания гранатовых пленок методом жидкофазной эпитаксии



Держатели подложек для выращивания гранатовых пленок

Скорость роста 1 – 3 мкм/мин

Установка по выращиванию монокристаллов по методу Чохральского (НПО «Карат», Львов, Украина)

Кристаллическая буля $Cd_3Ga_5O_{12}$:Nd направление выращивания [111]

1285 a 350

Технологическая линия шлифовально- полировальных станков

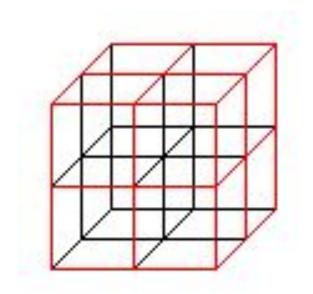
Станок прецизионной резки монокристаллических материалов

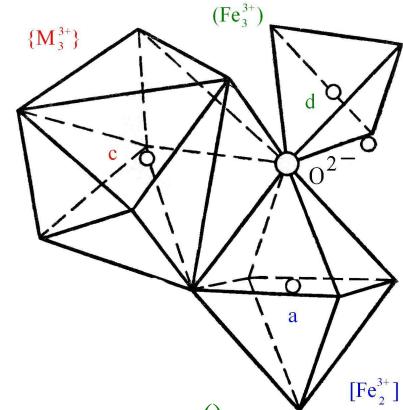
Лазерный интерферометр для контроля качества обработки рабочих поверхностей монокристаллических оптических элементов

Установка для выращивания монокристаллических слоев методом жидкофазной эпитаксии

Эпитаксиальные пленки на подложке из гадилиний-галлиевого граната

Ферриты-гранаты

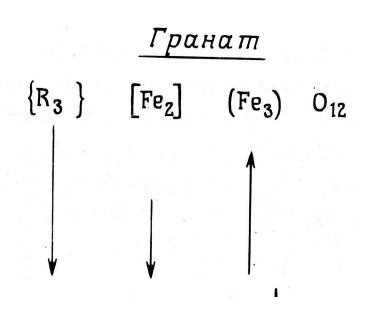




 ${M_3^{3+}}(Fe_3^{3+})[Fe_2^{3+}]O_{12}; {}$ — додекаэдрическая, () — тетраэдрическая и [] — октаэдрическая подрешетки.

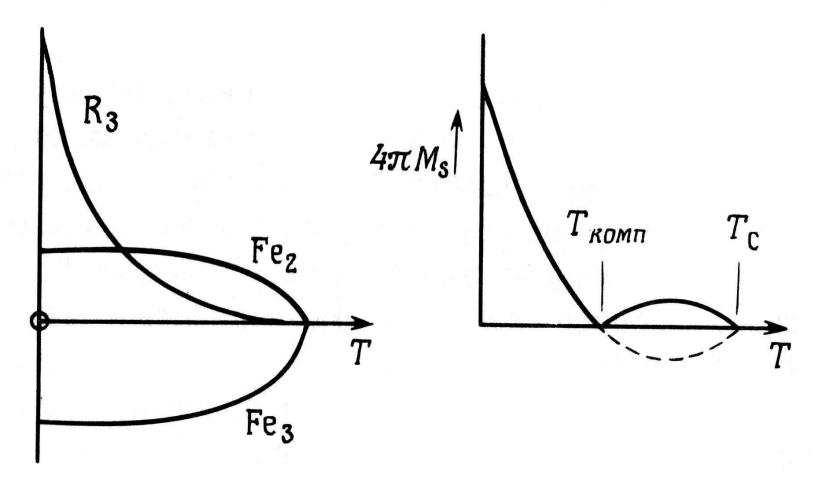
Ферриты-гранаты M_3 Fe $_5$ O $_{12}$, M — трехвалентный ион Y, Cd, Dy, Ho, Er, Tm, Lu, Yb, Sm, Er, Tb. Кристаллическая структура изоморфна структуре граната $Ca_3Al_2(SiO_4)_3$. В элементарной ячейке граната содержится 8 формульных единиц.

Ферриты-гранаты.

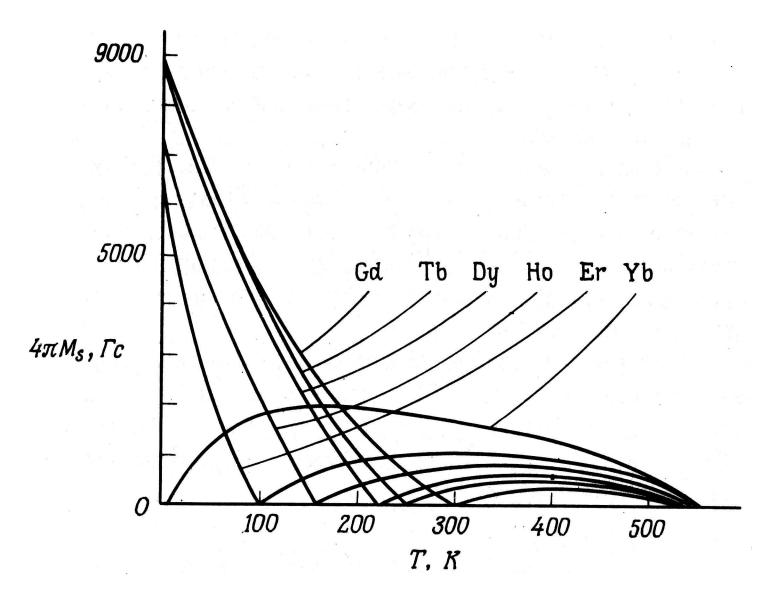


- Сильновзаимодействующие подрешетки железа можно считать единой подрешеткой.
 Следовательно в первом приближении магнитную структуру граната можно считать двухподрешеточной.
- Точка Нееля редкоземельных ферритов-гранатов практически не зависит от входящих в них редкоземельных ионов (T_N=563±15° K).

Размер доменов от 0,1 до 10³ мкм; Намагниченность насыщения до 2·10³ Гс; Константа одноосной анизотропии от 10⁻³ до 10⁵ эрг/см³; Параметр затухания Гильберта от 10⁻⁴ до 1.



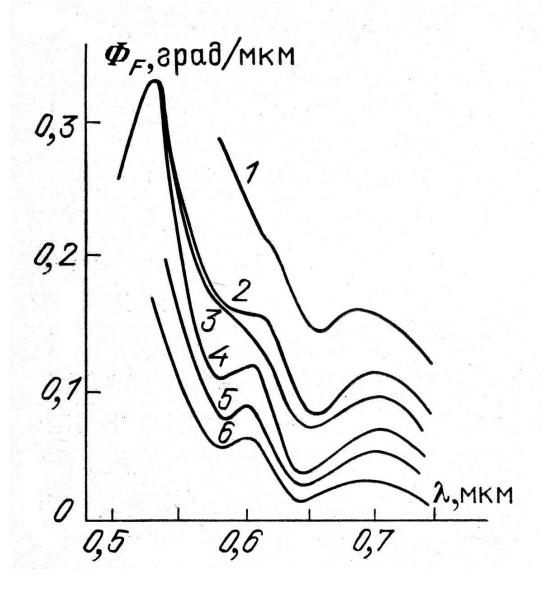
Температурная зависимость парциальных и результирующей намагниченностей в случае, когда существует температура компенсации.



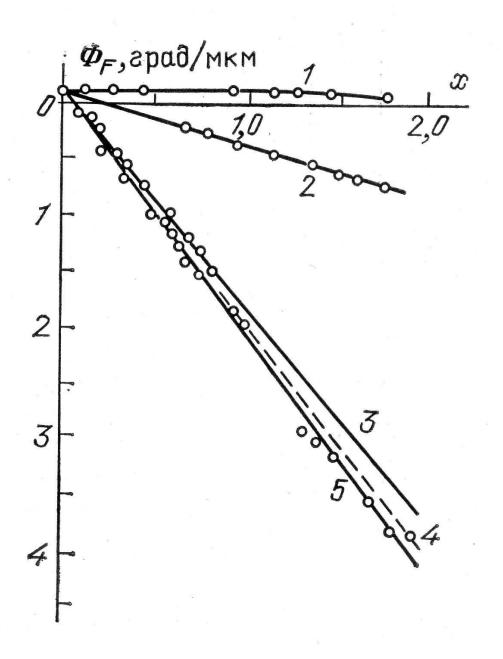
Температурная зависимость намагниченностей некоторых редкоземельных ферритов-гранатов.

Основные механизмы вращения плоскости поляризации света в ферритах-гранатах. (R₃Fe₅O₁₂)

- Гиромагнитный, связан с ферромагнитным и обменным резонансами, собственные частоты которых лежат в далекой ИК области;
- Гироэлектрический обменный, связан с обменным расщеплением энергетических уровней редкоземельных ионов;
- Гироэлектрический спин-орбитальный, связан со спин-орбитальным расщеплением энергетических уровней ионов железа;
- Гироэлектрический, связан с интенсивными электронными переходами в редкоземельный ионах, собственные частоты которых расположены в УФ области спектра.

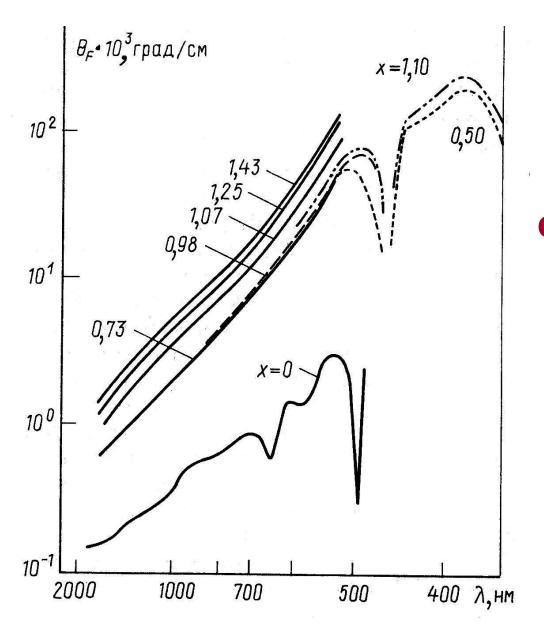


Дисперсия эффекта Фарадея в редкоземельных ферритах-гранатах $R_3 Fe_5 O_{12}$: R = Tb(1)65;Gd (2)64; Dy (3)66; Y (4)39; Eu (5)63; Er (6)68.

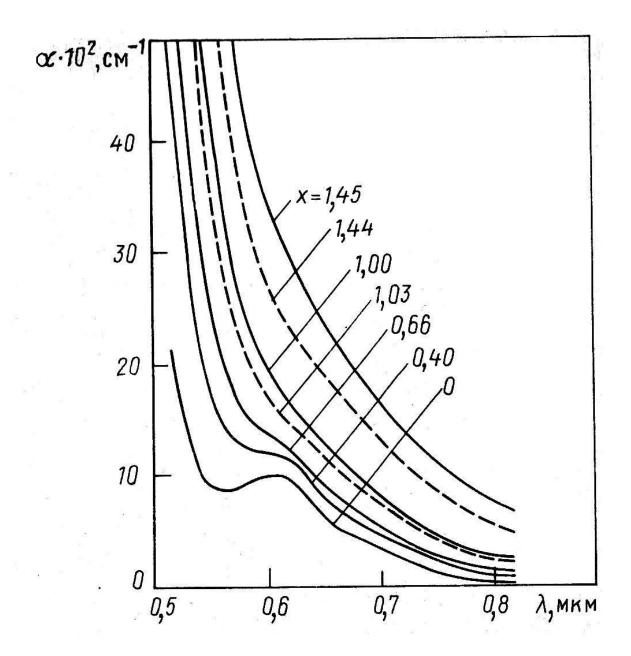


Концентрационная зависимость эффекта Фарадея в пленках состава

$$Y_{3}Fe_{5-x}Ga_{x}O_{12}$$
 (1),
 $Y_{3-x}Pr_{x}Fe_{5}O_{12}$ (2),
 $Y_{3-x}Pb^{2+}M^{4+}Fe_{5-x}O_{12}$ (3),
 $Bi_{x}Gd_{3-x}Fe_{5}O_{12}$ (4),
 $Bi_{x}Y_{3-x}Fe_{5}O_{12}$ (5),
 λ =0,63 MKM.



Спектры удельного фарадеевского вращения системы $R_{3-x}Bi_xFe_5O_{12}c$ различным содержанием висмута.



Спектры поглощения системы $Y_{3-x}Bi_xFe_5O_{12}$ с различным содержанием висмута.

$$I = I_o e^{-\alpha \cdot z}$$

I_o, I- интенсивность падающего и прошедшего света

Ферриты-гранаты

- В первом приближении магнитную структуру граната можно считать двухподрешеточной.
- Магнитные свойства изменяются в широком диапазоне.
- Материалы удобные для магнитооптических исследований.

Эффект Фарадея в двухподрешеточном ферримагнетике

$$\begin{cases} \frac{d\overrightarrow{M}_{1}}{dt} = \gamma_{1} \left[(\overrightarrow{H} + \overrightarrow{H_{1}}^{oom}) \times \overrightarrow{M}_{1} \right] \\ \frac{d\overrightarrow{M}_{2}}{dt} = \gamma_{2} \left[(\overrightarrow{H} + \overrightarrow{H_{2}}^{oom}) \times \overrightarrow{M}_{2} \right] \end{cases}$$

$$\overrightarrow{H_{1}^{odm}} = v_{11}\overrightarrow{M_{1}} + v_{12}\overrightarrow{M_{2}}$$

$$\overrightarrow{H_{2}^{odm}} = v_{21}\overrightarrow{M_{1}} + v_{22}\overrightarrow{M_{2}}$$

$$\begin{bmatrix} v \end{bmatrix} = \begin{vmatrix} 0 & -v \\ v & 0 \end{vmatrix}$$

В состоянии равновесия M_1 и M_2 ориентированы антипараллельно, и вектор намагниченности

$$\overrightarrow{M} = \overrightarrow{M_1} + \overrightarrow{M_2}$$

при насыщении направлен параллельно магнитному полю H

обменные константы

С учетом вида тензора у

$$\overrightarrow{H_1}^{odm} = -v \overrightarrow{M_2}$$

$$\overrightarrow{H_2}^{odm} = v \overrightarrow{M_1}$$

Уравнения Ландау-Лифшица имеют вид:

$$\begin{cases} \frac{d\overrightarrow{M_{1}}}{dt} = \gamma_{1} \left[\overrightarrow{H} \times \overrightarrow{M_{1}}\right] + \gamma_{1} \left[\overrightarrow{H_{1}}^{oom} \times \overrightarrow{M_{1}}\right] \\ \frac{d\overrightarrow{M_{2}}}{dt} = \gamma_{2} \left[\overrightarrow{H} \times \overrightarrow{M_{2}}\right] + \gamma_{2} \left[\overrightarrow{H_{2}}^{oom} \times \overrightarrow{M_{2}}\right] \end{cases}$$

Эти уравнения описывают прецессию векторов M_1 и M_2 , связанных друг с другом обменным взаимодействием, которое характеризуется константой обменного поля V.

$$\begin{cases} \frac{d\overrightarrow{M_{1}}}{dt} = \gamma_{1} \left[\overrightarrow{H} \times \overrightarrow{M_{1}}\right] - \gamma_{1} v \left[\overrightarrow{M_{2}} \times \overrightarrow{M_{1}}\right] \\ \frac{d\overrightarrow{M_{2}}}{dt} = \gamma_{2} \left[\overrightarrow{H} \times \overrightarrow{M_{2}}\right] + \gamma_{2} v \left[\overrightarrow{M_{1}} \times \overrightarrow{M_{2}}\right] \end{cases}$$

Найдем собственные частоты этой системы, т.е. частоты, с которыми вектора M_1 и M_2 могут совершать когерентное прецессионное движение вокруг положения равновесия.

Разложим M₁ и M₂ на статические и динамические составляющие

$$\overrightarrow{M}_{1,2} = \overrightarrow{M}_{1,2}^o + \overrightarrow{m}_{1,2}$$
 При этом $\left|\overrightarrow{M}_{1,2}^o\right| >> \left|\overrightarrow{m}_{1,2}\right|$ $m_{1,2} \approx e^{i\omega t}$ Если ось z параллельна полю H и $\overrightarrow{M}_{1,2}^o$, то из-за симметрии

Если ось z параллельна полю H и $M_{1,2}^{\, \sigma}$, то из-за симметрии системы относительно этой оси, обе динамические составляющие должны обладать круговой поляризацией в плоскости ху. Поэтому для них справедливы соотношения:

$$m_{(1,2)x} = m_{(1,2)}e^{i\omega t}$$

$$m_{(1,2)y} = -im_{(1,2)x} = -im_{(1,2)}e^{i\omega t}$$

Направления вращения векторов m_1 и m_2 одинаковы и определяются знаком ω .

Подставляя векторы M_1 и M_2 в виде сумм динамических и статических слагаемых, проектируя уравнения на оси координат, получим уравнения для амплитуд

Запишем уравнения системы

$$\frac{d}{dt} \begin{vmatrix} m_1 e^{i\omega t} \\ -im_1 e^{i\omega t} \\ M_1^o \end{vmatrix} = \gamma_1 \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 0 & H \\ m_1 e^{i\omega t} & -im_1 e^{i\omega t} & M_1^o \end{vmatrix} - \gamma_1 v \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ m_2 e^{i\omega t} & -im_2 e^{i\omega t} & M_2^o \\ m_1 e^{i\omega t} & -im_1 e^{i\omega t} & M_1^o \end{vmatrix}$$

$$\frac{d}{dt}\begin{vmatrix} m_2 e^{i\omega t} \\ -im_2 e^{i\omega t} \\ M_2^o \end{vmatrix} = \gamma_2 \begin{vmatrix} i & j & \vec{k} \\ 0 & 0 & H \\ m_2 e^{i\omega t} & -im_2 e^{i\omega t} & M_2^o \end{vmatrix} + \gamma_2 v \begin{vmatrix} i & j & \vec{k} \\ m_1 e^{i\omega t} & -im_1 e^{i\omega t} & M_1^o \\ m_2 e^{i\omega t} & -im_2 e^{i\omega t} & M_2^o \end{vmatrix}$$

Уравнение для х компонент первого и второго уравнений:

Сгруппируем по m_1 и m_2 :

$$\begin{cases} m_1 \Big(\omega - \gamma_1 H + \gamma_1 v M_2^o \Big) - \gamma_1 v M_1^o m_2 = 0 \\ \gamma_2 v M_2^o m_1 + m_2 \Big(\omega - \gamma_2 H - \gamma_2 v M_1^o \Big) = 0 \end{cases} \qquad M_{1,2}^o \approx M_{1,2}$$
 Где
$$M_{1,2} = \left| \overrightarrow{M}_{1,2} \right| \quad \text{и } M_1 > M_2$$

Однородная система уравнений имеет решение, если ее определитель равен нулю.

$$(\omega - \gamma_1 H + \gamma_1 v M_2)(\omega - \gamma_2 H - \gamma_2 v M_1) + \gamma_1 \gamma_2 v^2 M_1 M_2 = 0$$

$$\omega^2 - \omega (H(\gamma_1 + \gamma_2) + v(\gamma_2 M_1 - \gamma_1 M_2)) + \gamma_1 \gamma_2 H^2 +$$

$$-Hv\gamma_1 \gamma_2 (M_1 - M_2) = 0$$

$$\omega_{1,2} = \frac{1}{2} \left[H(\gamma_1 + \gamma_2) + v(\gamma_2 M_1 - \gamma_1 M_2) \pm \left\{ H^2 (\gamma_2 - \gamma_1)^2 + 2Hv(\gamma_1 - \gamma_2)(\gamma_1 M_2 + \gamma_2 M_1) + v^2 (\gamma_1 M_2 - \gamma_2 M_1)^2 \right\}^{0,5} \right]$$

Обменные поля составляют порядка $10^5 - 10^7$ Э и, следовательно,

как правило
$$H < v (M_1 - M_2)$$

Преобразуем с выражения $\omega_{1,2}$

Пренебрежем первым слагаемым под корнем и разложим в ряд.

$$\omega_{1,2} = \frac{1}{2} \left[H(\gamma_1 + \gamma_2) + \nu(\gamma_2 M_1 - \gamma_1 M_2) \left\{ 1 \pm 1 \pm \frac{H(\gamma_1 - \gamma_2)(\gamma_1 M_2 + \gamma_2 M_1)}{\nu(\gamma_2 M_1 - \gamma_1 M_2)^2} \right\} \right]$$

Рассмотрим «высокую» и «низкую» частоты

 $\omega_{1} = \frac{1}{2} \left[H(\gamma_{1} + \gamma_{2}) + v(\gamma_{2}M_{1} - \gamma_{1}M_{2}) \left\{ 2 + \frac{H(\gamma_{1} - \gamma_{2})(\gamma_{1}M_{2} + \gamma_{2}M_{1})}{v(\gamma_{1}M_{2} - \gamma_{2}M_{1})^{2}} \right\} \right]$

Пренебрежем слагаемыми с Н

$$\omega_1 = \frac{1}{2} [2\nu (\gamma_2 M_1 - \gamma_1 M_2)] = \nu (\gamma_2 M_1 - \gamma_1 M_2)$$

Эта частота определяется эффективным обменным полем – частота обменного резонанса.

$$\omega_1 = \omega_{o\delta M}$$

Лежит в далекой ИК области.

<u> Тизкая» частота</u>

$$\omega_{2} = \frac{1}{2} \left[H(\gamma_{1} + \gamma_{2}) - \nu(\gamma_{2}M_{1} - \gamma_{1}M_{2}) \left\{ \frac{H(\gamma_{1} - \gamma_{2})(\gamma_{1}M_{2} + \gamma_{2}M_{1})}{\nu(\gamma_{2}M_{1} - \gamma_{1}M_{2})^{2}} \right\} \right] =$$

$$= \frac{H}{2} \left[\frac{2\gamma_{1}\gamma_{2}M_{1} - 2\gamma_{1}\gamma_{2}M_{2}}{\gamma_{2}M_{1} - \gamma_{1}M_{2}} \right] = \frac{2H\gamma_{1}\gamma_{2}}{2} \left[\frac{M_{1} - M_{2}}{\gamma_{2}M_{1} - \gamma_{1}M_{2}} \right] =$$

$$=Hrac{M_{1}-M_{2}}{M_{1}}=\gamma_{
i}\phi\phi H=\omega_{r}$$
 Частота ω_{r} не зависит от константы молекулярного поля и совпадает с обычной резонансной частотой

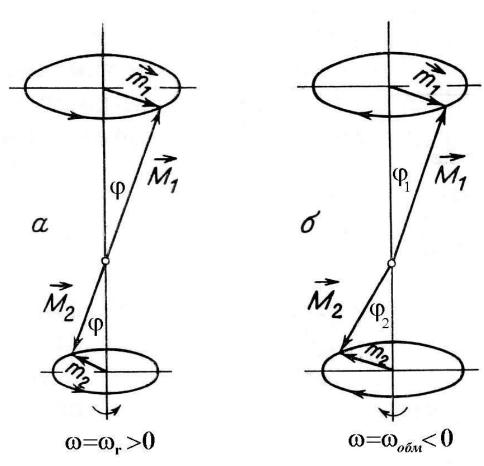
обычной резонансной частотой ферромагнетика с гиромагнитным отношением $\gamma_{9\phi\phi}$.

$$\gamma_{9\phi\phi} = \frac{M_1 - M_2}{M_1 - M_2} = \frac{M_2}{\gamma_1} = \frac{M_2}{\gamma_2}$$

 $\gamma_{_{3}\phi\phi}=rac{M_{_{1}}-M_{_{2}}}{M_{_{1}}-M_{_{2}}}$ Величина $\gamma_{_{3}\phi\phi}$ характеризует гиромагнитные свойства вещества как единой системы и имеет смысл только в том случае, когда вектора $M_{_{1}}$ и $M_{_{2}}$ параллельны. В случае, когда $\gamma_{_{1}}=\gamma_{_{2}}$ ω — это частота ферромагнитного посочения. $\gamma_1 = \gamma_2$, ω_r – это частота ферромагнитного резонанса.

Эта частота находится в СВЧ области.

Типы прецессий в ферримагнетике с двумя подрешетками $M_1 > M_2$.



Частоты ω_r и $\omega_{oбм}$ имеют противоположные знаки, следовательно, соответствующие им прецессии происходят в противоположных направлениях.

Т.о. ферримагнетик с двумя подрешетками имеет две различные собственные частоты. Одна из них совпадает с резонансной частотой ферромагнетика, а вторая является прямым следствием наличия подрешеток.

Если в уравнение Ландау-Лифшица добавить член, учитывающий высокочастотное поле, и решить его аналогично случаю ферромагнетика, то можно получить выражения для компонент тензора восприимчивости.

$$\theta_F = \frac{\gamma \sqrt{\varepsilon \mu} M_o}{c}$$

 $\theta_F = rac{\gamma \sqrt{arepsilon \mu M_o}}{c}$ Удельное фарадеевское вращение в ферромагнетике:

Аналогичный расчет для двухподрешеточного ферримагнетика при *ω* >> *ω_r*, ω_{обм}

$$\theta_F = \frac{\sqrt{\varepsilon\mu} (\gamma_1 M_1 - \gamma_2 M_2)}{c}$$

$$M = M_1 - M_2$$

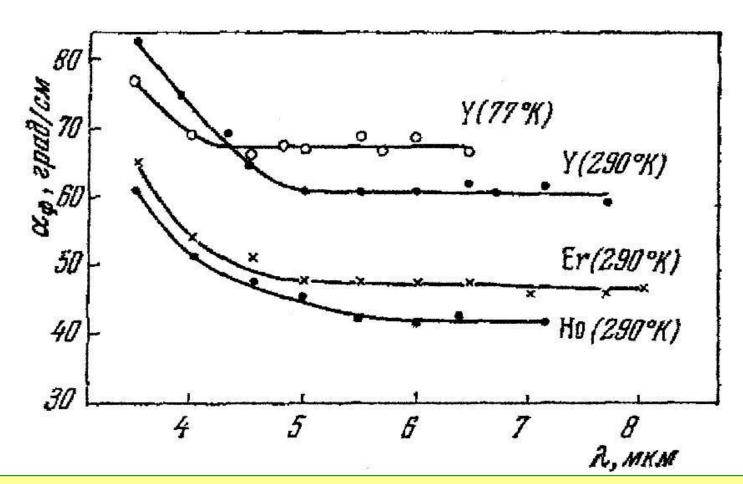
$$\gamma_{\beta\phi\phi} = \frac{M_1 - M_2}{M_1 - M_2}$$

$$\frac{M_1}{\gamma_1} - \frac{M_2}{\gamma_2}$$

видно, что $\theta_{\scriptscriptstyle F}$ определяется вкладом как ферромагнитного (первое слагаемое), так и обменного резонансов.

Переписывая эту формулу в виде
$$\theta_{\it F} = \frac{\sqrt{\varepsilon\mu}}{c} \Bigg(\gamma_{\it 9}\phi M - \frac{\gamma_{\it 9}\phi M}{\gamma_{\it 1}} M_{\it 2} (\gamma_{\it 1} - \gamma_{\it 2})^2}{\gamma_{\it 1}\gamma_{\it 2} M} \Bigg)$$

Эффект Фарадея в ферритах-гранатах иттрия (Y), эрбия (Er) и гольмия (Ho) в инфракрасной области спектра при T=290°К и в феррите-гранате иттрия при T=77°К



Частотно-независимый эффект Фарадея – следствие магнитной восприимчивости на оптических частотах.

Магнитооптические материалы.

- Магнитооптическая добротность
- Пленки ферритов-гранатов.
 - ✓ Выращивание
 - ✓ Магнитооптические свойства
 - ✓ Эффект Фарадея в двухподрешеточном ферримагнетике
- Ортоферриты
- Борат железа