Задача заключается в определении оптимального маршрута объезда по городов по критерию времени, стоимости или длине маршрута. Эта задача связана с определением гамельтонова цикла минимальной длины.

Основным методом решения таких задач является метод ветвей и границ. Сущность метода заключается в том, что все множество допустимых решений задачи делится на последовательно уменьшающиеся подмножества с помощью процедуры ветвления. В результате находится последовательность объезда пунктов (маршрут), протяженность которого меньше любого другого возможного варианта, т.е. строится оптимальный кольцевой маршрут.

Построить оптимальный кольцевой маршрут для неографа *G(X,Y)* (рис. 10.36) с вершинами *i=1,6*. Пропускные способности ребер указаны на графе.

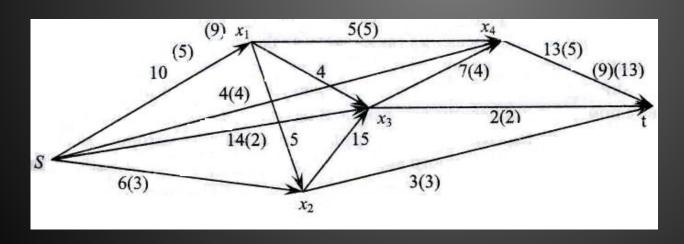
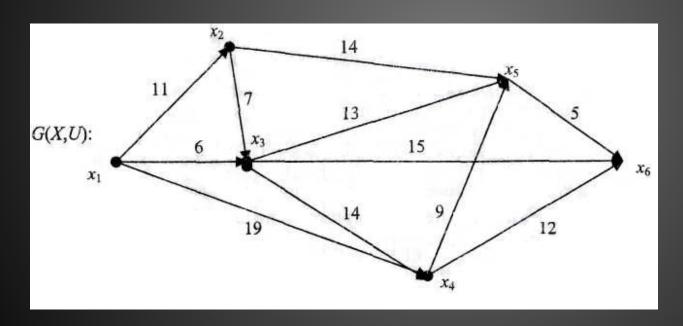


Рис. 10.36

1. Составим матрицу пропускных способностей ребер *C*(*G*) графа *G*(*X*,*U*) рис.10.37.



• Рис. 10.37

Пропускную способность между однородными вершинами условно принимаем равнукс; = ∞, i = 1,6 ности, т.е. (клетки главной диагонали матрицы С)

		S	x_1	x_2	x_3	x_4	t
	s		9	3	2	4	
	x_1			0	4	5	
C_6 :	x_2			0			3
	x_3						2
	x_4						13
	t						

• (10.14)

• Для определения нижней границы множества выполним приведение матрицы (табл. 10.14), т.е. в каждом столбце и строке матрица должна содержать не менее одного нуля. С этой целью выберем в каждой строке минимальный элемент и запишем их в

правой колонке табл 10 1 x_1 x_2 x_3 x_4 x_5 x_6 $\min_{k} a_{ik}$ x_1 x_2 C(G): x_{4} x5 x_6 ∞

• Табл. 10.14.

(10.14)

• Вычитая из элементов каждой строки соответствующие значения min a_{ik} , получаем табл. 10.15.

	13.7	x_1	x_2	x_3	x_4	x_5	x_6
	x_1	∞	5	0	13	13	15
	x_2	4	∞	0	14	7	12
	x_3	0	1	∞	8	- 7	9
$C_1(G)$:	x_4	10	12	5	∞	0	3
	<i>x</i> ₅	14	9	8	4	∞	0
	x_6	16	14	10	7	0	∞
	$\min_i a_{ik}$	0	1	0	4	0	0

• Табл. 10.15

Для завершения приведения матрицы табл. 10.15 вычитаем минимальные значения в каждом столбце min a_{ik} и получим приведенную матрицу (табл. 10.16). Сумма констант приведения по строкам и столбцам матрицы составит:

$$H=6+7+6+9+5+5+1+4=43.$$

Сумма констант приведения *H* = 43 является границей всех циклов, т.е. любой вариант кольцевого маршрута не может быть меньше этой нижней границы.

- С помощью ветвления рассматриваются циклы (последовательности обхода вершин графа), которые могут привести к построению оптимального (минимального) кольцевого маршрута.
- На первом этапе построения древовидного графа множество всех циклов делится на два подмножества: первое из них включает все циклы (замкнутые маршруты) с перемещением от вершины x, к вершине x, а второе множество содержит циклы без этого перемещения.
- На графе ветвления от исходной вершины H = 43 отходят две дуги (ветви): к вершине (i,k), изображающей первое из этих подмножеств и к вершине, указывающее второе (рис. 10.38).

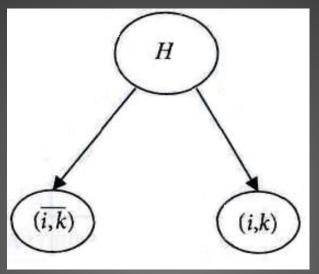


Рис. 10.38

Рассмотрим, как выбирается пара вершин $(i,k_{i,k})$. Пара вершин (x, x_k) на основании a(i,k), которые рассчитываются для всех клеток приведенной матрицы (10.15), содержащих нули. Для определения a(i,k) в строке x_k выбирается минимальный элемент $(c_{i,k} = 0)$ и минимальный в столбце x_k . Эти минимальные элементы складываются, а их сумма равна значению a(i,k).

• В рассматриваемом примере эти значения элементов в строках укажем справа, а в столбцах — внизу (табл. 10.16), сумму минимальных элементов запишем в клетках, содержащих нули и отметим их кружком (табл. 10.16). Вычислим *a(i,k)* для каждой клетки с нулевым элементами:

	x_1	x ₂	x_3	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
x_1	∞	4	0	9	13	15
<i>x</i> ₂	4	8	0	10	7	12
<i>x</i> ₃	0	0	∞	4	7	9
<i>x</i> ₄	10	11	5	∞	3	3
<i>x</i> ₅	4	8	8	3	∞	3
<i>x</i> ₆	16	13	10	3	0	0 0

• (10.16)

$$\alpha(1,3) = 4 + 0$$
, $\alpha(2,3) = 4 + 0$, $\alpha(3,1) = 0 + 4$,
 $\alpha(3,2) = 0 + 4$, $\alpha(4,5) = 3 + 0$, $\alpha(5,4) = 0 + 3$,
 $\alpha(5,6) = 0 + 3$, $\alpha(6,5) = 3 + 0$.

Запишем значения α(i,k) в соответствующих клетках с нулями, отмечая их кружками в табл. 10.16, выбираем наибольшее значение α(i,k)

Таких значений в табл. 10.16 четыре. Выбираем одно из них, например, $\alpha(3,1) = 0 + 4 = 4$ (для строки x_3 и столбца x_4 .

Вычеркивая их, получаем табл. 10.17, в которой нуль, расположенный в строке x_1 и столбце x_3 заменяем на ∞ , так как вершина x_3 не должна иметь цикла (3,1), т.е. $c_{13} = \infty$

Garage	x ₂	<i>x</i> ₃	x ₄	<i>x</i> ₅	<i>x</i> ₆
<i>x</i> ₁	4	∞	9	13	15
<i>x</i> ₂	∞	0	10	7	12
<i>x</i> ₄	11	5	∞	0	3
<i>x</i> ₅	8	8	0	∞	0
x_6	13	10	3	0	∞

(10.17)

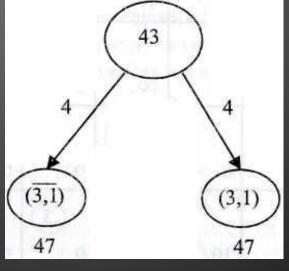
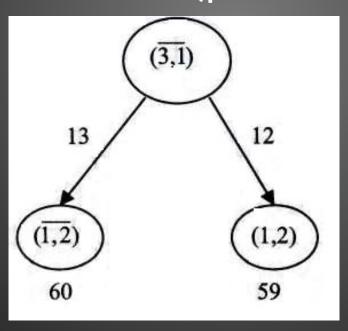


Рис. 10.39

- Определяем ребро ветвления, деля множества маршрутов на дв $(\overline{3,1})$ и (3,1), рис. 10.39. Нижняя граница вершинь $(\overline{3,1})$ представляет сумму значений нижней границы предыдущей вершины, р $\alpha(\overline{3,1}) = 4$, и $\alpha(\overline{3,1}) = 4$, и $\alpha(\overline{3,1}) = 4$
- Для определения нижней границы вершины вторым слагаемым берется сумма констант приведения матрицы 10.17. Для приведения этой матрицы из строки х₁ следует вычесть минимальный элемент 4 и получим матрицу 10.18.

Сумма констант приведения равна h = 4. Нижняя граница вершины (3,1) составит H(3,1) = 43 + 4 = 47 (рис. 10.40).



• Рис. 10.40

Для получения следующей пары вершин от вершины (3,1) определим α и выберем новую пару вершин, входящих в концевой маршрут.

В табл. 10.18 укажем минимальные элементы в строках и столбцах, записанных справа и внизу этой таблицы соответственно. Вычислим сумму констант приведения α(i,k) и включим их в табл. 10.18:

	x ₂	<i>x</i> ₃	x4	<i>x</i> ₅	<i>x</i> ₆	
<i>x</i> ₁	(13) 0	∞	5	9	12	5
<i>x</i> ₂	∞	(12) 0	10	7	12	7
<i>x</i> ₄	11	5 g R K	∞	3	3	3
x ₅	8	8	3	00	3	0
<i>x</i> ₆	13	10	3	3	∞	3
	8	5	3	0	3	65

• Табл. 10.18

$$\alpha(1,2) = 5 + 8 = 13$$
 $\alpha(2,3) = 7 + 5 = 12,$
 $\alpha(4,5) = 3 + 0$ $\alpha(5,4) = 0 + 3,$
 $\alpha(5,6) = 0 + 3$ $\alpha(6,5) = 3 + 0.$

 $\alpha(5,6) = 0 + 3$ $\alpha(6,5) = 3 + 0$. Принимаем вершины X_1 и X_2 с величиной приведения $\alpha(1,2) = 13$ в качестве звена в кольцевом маршруте.

В табл. 10.18 вычеркиваем столбец x_2 и получаем та x_3 x_4 x_5 x_6

15.00	<i>x</i> ₃	x4	x_5	x_6
x_2	∞	10	7 🔠	12
<i>x</i> ₄	5	∞	0	3
<i>x</i> ₅	8	0	∞	3
<i>x</i> ₆	10	3	0	∞

Табл.10.19

Определяем вершины ветвления для ребер (1, $\overline{(1,2)}$). Нижняя граница вершин $\overline{(1,2)}$. определяется из условия $\overline{H(1,2)} = H(3,1) + \alpha(1,2)$, $\overline{H(1,2)} = 47 + 13 = 60$.

Для определения нижней границы вершины (1,2) вторым слагаемым берем сумму констант приведения табл. 10.19, вычитая из строки $x_2 a_{25} = 7$ и в столбце x_3 величину $\alpha_{43} = 5$, чтобы матрица имела нули в каждой строке и каждом столбце.

Величина приведения

$$h = 7 + 5$$
. $H(1,2) = 47 + 7 + 5 = 59$.

• Приведенная матрица табл. 10.20 имеет

вид:

	<i>x</i> ₃	x ₄	<i>x</i> ₅	<i>x</i> ₆	
<i>x</i> ₂	∞	3	3	5	
x4	3	00	0	3	
x ₅	8	3	00	3	1
<i>x</i> ₆	5 273	3	3	∞	
2 4 8	(30)	3	3 0	3	_

• Табл. 10.20

• Определяем значени $\alpha(i,k)$ для клеток с НУЛЕВЫМИ ЭЛЕМЕНТАМИ: $\alpha(2,5) = 3 + 0$, $\alpha(4,3) = 0 + 3 = 5$,

$$\alpha(2,5) = 3 + 0$$
, $\alpha(4,3) = 0 + 3 = 5$

$$\alpha(4,5) = 0 + 0$$
, $\alpha(5,4) = 0 + 3$,

$$\alpha(5,6) = 0 + 3$$
, $\alpha(6,5) = 3 + 0$.

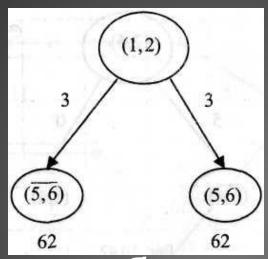


Рис. 10.41

Исключаем из табл. 10.20 x_5 строку и столбец x_6 .

Получаем табл. 10.23

	<i>x</i> ₃	x_4	x_5
x ₂	∞	3	0
<i>x</i> ₄	0	∞	0
<i>x</i> ₆	5	3	∞

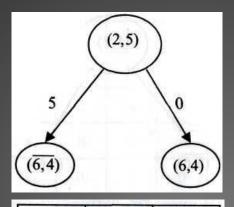
• (10.21)

• Приведем табл. 10.21, вычитая из каждого элемента строки x_6 минимальный элемент $a_{64} = 3$, Получаем табл. 10.22 в виде:

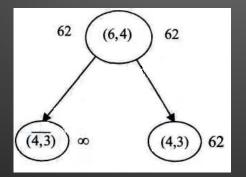
	x_3	x4	x_5	
x ₂	∞	3	3	3
<i>x</i> ₄	0	∞	0	0
<i>x</i> ₆	2	5	∞	2

• (10.22)

• Строим подграф (рис. 10.42), исключаем в табл. 10.22 строку x₆ и столбец x₄, так как α(6,4) = 5. Получаем табл. 10.23, в которой α₄₄ = 0. Заменяем ∞ чтобы исключить цикл.



	<i>x</i> ₃	<i>x</i> ₅
x ₂	∞	0
X ₄	0	∞



• Рис. 10.42

• (10.23)

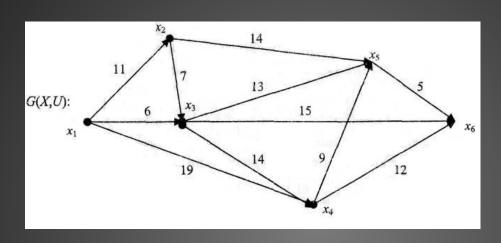
• Рис. 10.43

• Строим древовидный граф ветвлений (рис. 10.45), соединяя отдельные элементы графа (рис. 10.39-10.43) и гамельтонов цикл обхода вершин

ИСХОДН x_2 14 x_5 x_6 x_1 6 x_3

Рис. 10.44

- Гамельтонов цикл образуют ребра $(x_{3,}x_{1})$, $(x_{1,}x_{2})$, (x_{2},x_{5}) , $(x_{5,}x_{6})$, $(x_{6,}x_{4})$, (x_{4},x_{3}) .
- Длина маршрута обхода вершин $x_3 x_1 x_2 x_5 x_6 x_4 x_3$ графа G(X,Y) (рис. 10. 37) составляет M = 6 + 11 + 14 + 5 + 12 + 14 = 62 и совпадает с нижней границей графа (рис. 10.45).



• Рис.10.37

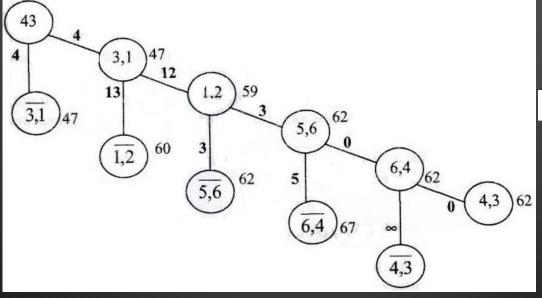


Рис. 10.45

- Последовательность решения задачи коммивояжера методом ветвей и границ состоит в следующем:
- 1. На основании графа посещения городов составляется матрица расстояний от соответствующих вершин.
- 2. Проводится приведение матрицы, вычитая минимальные элементы по строкам и столбцам.
- 3. Определяем нижнюю границу всего множества маршрутов, складывая значения вычитаемых минимальных элементов.

- 4. В каждой клетке приведенной матрицы, в которых $a_{ik} = 0$, заменяем поочередно нули на ∞ и вычисляем суммы новых констант приведения $H(x_i, x_k)$, которые записываем в клетке с нулем, отмеченной кружком.
- 5. Выбираем ребро ветвления (i,k) по максимальной величине суммы констант приведения H_{max} . Затем исключаем его из множества путем замены элемента матрицы $a_{1k} = \infty$. В результате будет определено подмножество маршрутов $\{(i,k)\}$.
- 6. В полученной матрице расстояний по строкам получаем нули, вычитая минимальное значение элементов в соответсвующих строках и определяем нижнюю границу подмножества маршрутов *H(i,k)*.

- Включаем ребро (*i,k*) в маршрут, вычеркивая строку *i* и столбец *к* в приведенной матрице расстояний и заменяя симметричный элемент *a_{ik}* =∞ для исключения образования негамельтонова цикла.
- 8. Приводим сокращенную матрицу (получаем нули в строках вычитанием минимального элемента) и определяем нижнюю границу подмножества *H(i,k)*.
- 9. Сравниваем нижние границы подмножеств H(i,k) и $H(\underline{i,k})$ и подмножество с меньшим значением нижней границы подвергаем ветвлению.
- 10. Определяем гамельтонов цикл при получении окончательной матрицы размерности 2x2.