БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТРАНСПОРТА кафедра «Динамика, прочность и износостойкость транспортных средств»

ОСНОВЫ ТЕОРИИ НАДЕЖНОСТИ

Лектор: д.т.н., профессор Сосновский Леонид Адамович к.т.н., доцент Комиссаров Виктор Владимирович п.з.: ассистент Таранова Елена Сергеевна

Лекции – 18 часов Практические занятия – 14 часов Форма контроля знаний – зачет

(по всем вопросам обращаться на кафедру ауд. 1403, 1415а)

АИТЕРАТУРА

Основная:

- 1. Сосновский, Л.А. Элементы теории вероятностей, математической статистики и теории надёжности / Л.А. Сосновский. Гомель; БелГУТ, 1994. 146 с. (в НТБ БелГУТа).
- 2. *Шевченко Д.Н.* Основы теории надежности : учеб.-методич. пособие для студ. техн. спец./ Д. Н. Шевченко; под ред. Л.А. Сосновского. Гомель: БелГУТ, 2010. 250 с. (в НТБ БелГУТа)
- 3. Богданович А.В. Оценка основных показателей надежности и риска невосстанавливаемых изделий / А.В. Богданович, О.М. Еловой, Л.А. Сосновский. Гомель : БелГУТ, 1995 г. 95 с. (в НТБ БелГУТа)

Дополнительная:

- Сосновский, Л.А. Вероятностные методы расчета на прочность при линейном и сложном напряженных состояниях в 2-х частях: Метод. указания по изучению курса «Сопротивление материалов»/ Л.А. Сосновский. Гомель: БелИИЖТ, 1984. 74с. (в НТБ БелГУТа).
- **1.** Сосновский, Л.А. L-риск (механотермодинамика необратимых повреждений) / Л.А. Сосновский. Гомель: БелГУТ, 2004. 317 с.
- **2. Сосновский, Л.А.** Комплексная оценка надежности силовых систем по критериям сопротивления усталости и износостойкости (основы трибофатики): Метод. указания по изучению курса «Надежность транспортных систем, машин и сооружений» для студентов транспортных вузов / Л.А. Сосновский. Гомель: БелИИЖТ, 1988. –56 с. (в НТБ БелГУТа).
- **3. Богданович, А.В.** Оценка надежности простого коленчатого вала. Надежность по критериям трибофатики: Пособие по курсу «Основы теории надежности» / А.В. Богданович, О.М. Еловой, Л.А. Сосновский. Гомель: БелГУТ, 2002. Ч.2.–30 с. (в методическом кабинете кафедры 5 экз.).
- **4.** Сосновский, Л.А. Показатель безопасности и оперативная характеристика риска / Л.А. Сосновский. Гомель, БелИИЖТ, 1991. (в НТБ БелГУТа).

ПЛАН ЛЕКЦИЙ

- Лекция 1. Надежность в технике
- Лекция 2. Отказы и их причины. Статистический анализ
- Лекция 3. Оценка показателей надежности: модель отказов
- Лекция 4. Рассеяние характеристик прочности и нагруженности
- Лекция 5. Оценка показателей надежности: модель нагрузка-прочность (часть1)
- Лекция 6. Оценка показателей надежности: модель нагрузка-прочность (часть2)
- Лекция 7. Схемная надежность
- Лекция 8. Надежность трибофатической системы
- Лекция 9. Концепция риска. Оценка безопасности.

Лекция 9

КОНЦЕПЦИЯ РИСКА. ОЦЕНКА БЕЗОПАСНОСТИ

Присутствие риска в современном обществе неоспоримо. Риск присутствует во всех сферах жизнедеятельности общества. В повседневной жизни мы сталкиваемся с политическими, экономическими, экологическими, психологическими, правовыми, медицинскими и многими другими видами рисков. Некоторые наиболее опасные из них связаны с безопасностью нашей жизни как отдельных личностей, семей или корпораций, так и общества в целом.

Однозначного понимания сущности **риска** не существует. Это связано с тем, что это явление имеет несколько несовпадающих, или же вообще противоположенных реальных основ, а также с тем, что **риск** всегда связан с субъектом и решениями, которые тот принимает. Круг изучаемых качеств, черт, элементов и свойств этого явления во многом зависит от того, в каком аспекте – техническом, социальном, психологическом, экономическом, гуманитарном – понятие **«риск»** и **«ситуацию риска»** будет рассматривать исследователь.

риска» будет рассматривать исследователь. К настоящему времени сложилось устойчивое представление, согласно которому **риск** – это некоторая комбинация частоты или вероятности события и последствий его нежелательного эффекта. Именно такое понятие риска дано в европейском стандарте IEC 300-3-9 (1995).

Риск: сочетание вероятности события и его последствий (ГОСТ Р 51897-2002):

Примечания: 1) Термин «**риск**» обычно используют только тогда, когда существует возможность негативных последствий.

2) В некоторых ситуациях **риск** обусловлен возможностью отклонения от ожидаемого результата или события.

Рассмотрим основные подходы к количественной оценке риска.

9.1.1 Подход Болотина

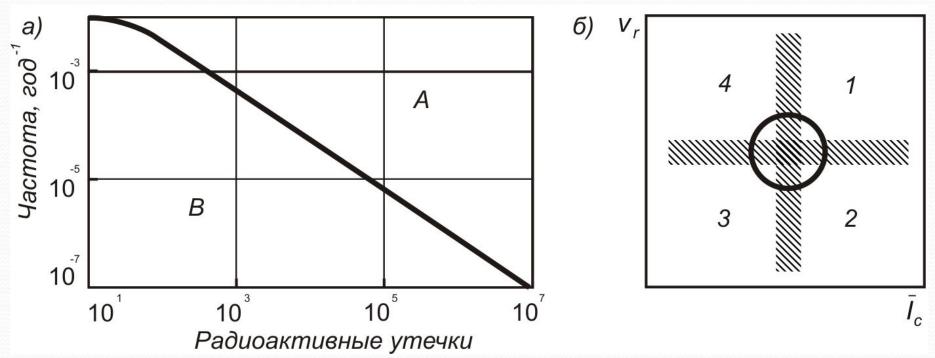
Функция риска

$$H(t) = 1 - S(t), \tag{1}$$

S(t) — функция безопасности, определяемая как вероятность того, что за время t аварийная ситуация не возникнет, т. е. не произойдет отказ системы с ожидаемыми последствиями.

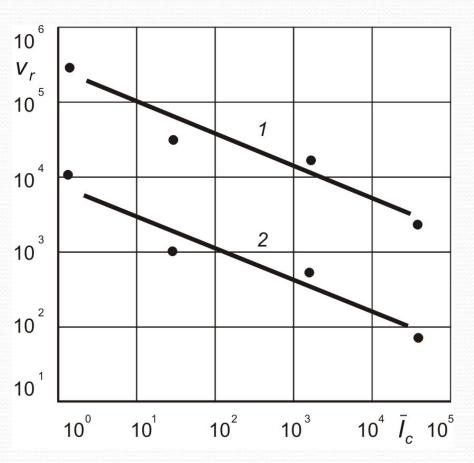
Интервал возможного изменения численного значения риска

$$0 \le H(t) = P(t \le t_*) \le 1 \tag{2}$$

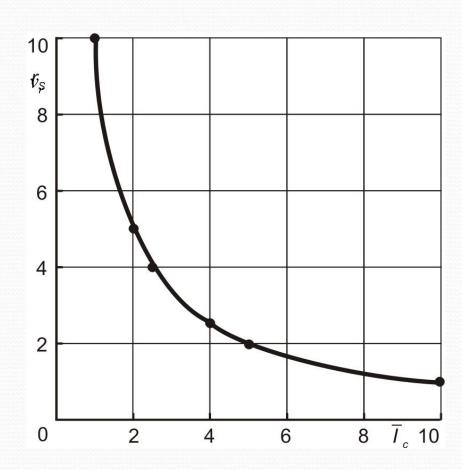

Интенсивность риска

$$h(t) = H'(t)/[1-H'(t)] \approx -S'(t).$$
 (3)

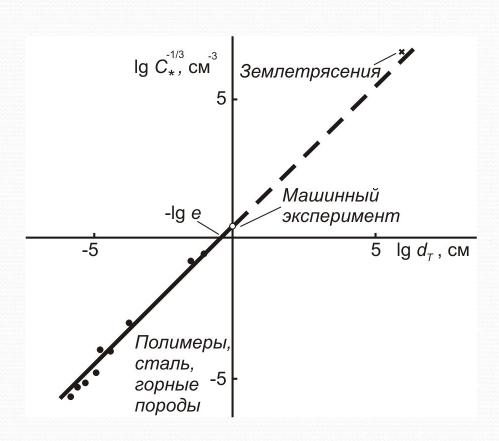
9.1.2 Кривая Фармера



Предельная кривая аварийных утечек йода (a) и характерные области поля риска (b)


Функция риска

$$V_r \left(\frac{\text{аварии}}{\text{время}} \right) \overline{I_c} \left(\frac{\text{потери}}{\text{аварии}} \right) = r_s \left(\frac{\text{потери}}{\text{время}} \right)$$
 (4)



Зависимость частота— интенсивность автомобильных аварий за год

Кривая равных рисков

9.1.3 Критерий Журкова-Куксенко-Петрова

Зависимость среднего расстояния между трещинами от их среднестатистической длины

Концентрационный критерий разрушения

$$C_*^{-1/3} = d_T e.$$
 (5)

Безразмерный параметр поврежденности

$$\frac{d_T}{C^{-1/3}} = \mathbf{\omega}_d. \tag{6}$$

Интервал изменения поврежденности

$$0 \le \omega_d \le 1/e. \tag{7}$$

Интервал изменения риска

$$0 \le \rho \le 1. \tag{8}$$

9.1.4 Обобщенный подход

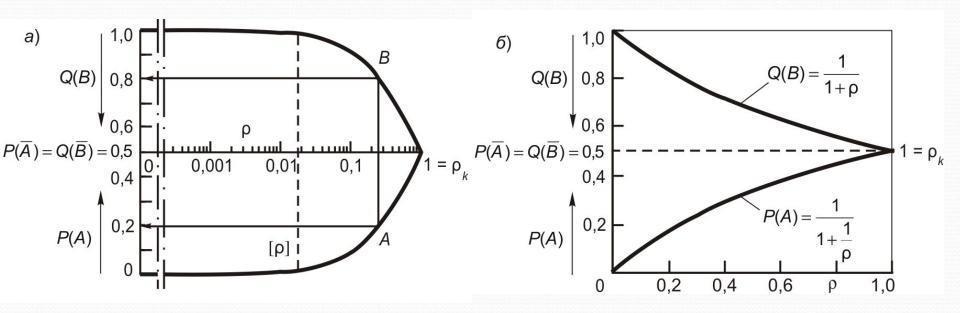
Риск есть ожидание повреждений в объектах, системах, процессах; это, в обобщенном представлении, ожидание любых неблагоприятных явлений, событий, ситуаций в природе и обществе. Количественно такое ожидание можно оценить как долю «плохого» в «хорошем».

$$\rho = \frac{P(A)}{Q(B)} \tag{9}$$

P(A) – вероятность наступления неблагоприятного события A, а Q(B) – вероятность наступления противоположного ему благоприятного события B.

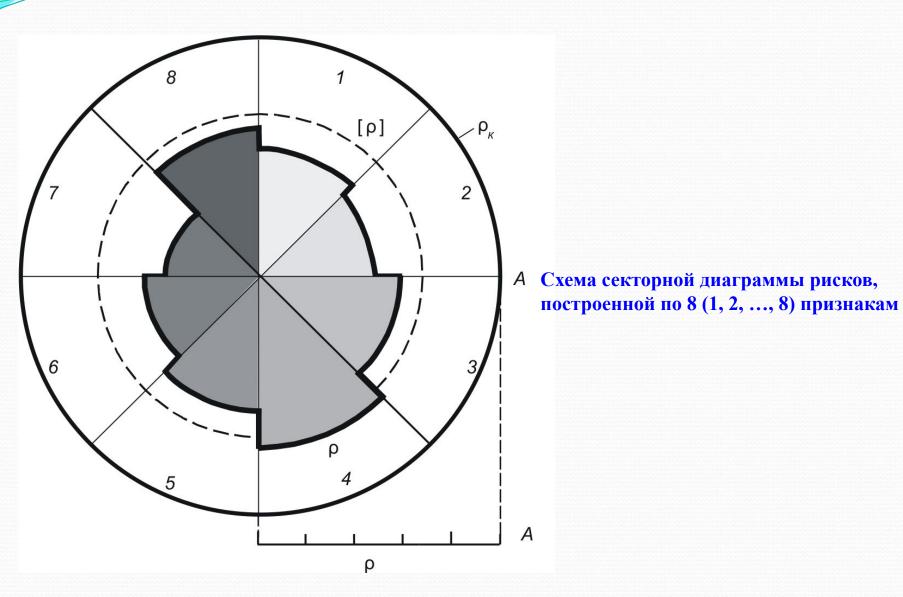
$$P(A) + Q(B) = 1$$
 (10)

$$\rho = \frac{P(A)}{1 - P(A)} = \frac{1}{\frac{1}{P(A)} - 1}$$
 (11)


$$\rho = \frac{1 - Q(B)}{Q(B)} = \frac{1}{Q(B)} - 1 \tag{12}$$

Интервал возможного изменения численных значений показателя риска

$$0 \le \rho \le \infty \tag{13}$$


Оперативная характеристика риска, построенная на логарифмической (а) либо равномерной (б) шкале

P(A)	Q(B)=1-P(A)	$\rho = P(A)/Q(B)$	P(A)	Q(B)=1-P(A)	$\rho = P(A)/Q(B)$
0.01	0.99	0.0101	0.6	0.4	0.6666
0.05	0.95	0.0526	0.7	0.3	0.4286
0.1	0.9	0.1111	0.8	0.2	0.2500
0.2	0.8	0.2500	0.9	0.1	0.1111
0.3	0.7	0.4286	0.95	0.05	0.0526
0.4	0.6	0.6666	0.99	0.01	0.0101
$P(\overline{A}) = 0.5 =$ = $Q(\overline{B})$	0.5	$\rho_{k}=1$	Q(B)	P(A)=1-Q(B)	$\overline{\rho} = P(A)Q(B)$

Теоретические данные для построения оперативной характеристики риска

(16)

16.1.5 Риск и безопасность

Безопасность – это противоположность риска

$$S_{\rho} + \rho = 1 \tag{14}$$

*S*р - показатель безопасности, связанный с представлением о риске.

$$S_{\rho} = \frac{1 - 2P(A)}{1 - P(A)}.$$
 (15)
 $S_{\rho} = 2 - \frac{1}{Q(B)}.$ (16)

$$S_{\rho} = 2 - \frac{1}{Q(B)}.$$

Анализ рисков и безопасности: основные ситуации

Состояние по риску	ρ	$P(A_i)$	$Q(B_i)$	Sp	Ситуации по безопасности
Нулевой риск	0	0 0 1 1		Абсолютная безопасность	
Ограниченный риск	0 < ρ < 1	0 < P < 0,5	0,5 < Q < 1	1 > S _p > 0	Ограниченная безопасность
Критический риск	1 = ρ _κ	0,5	0,5		Нулевая безопасность (аварии)
Закритические риски	1 < ρ < ∞	0,5 < <i>P</i> < 1	0 < Q < 0,5	$0 > S_{\rho} > -\infty$	Отрицательная безопасность (катастрофы)
Бесконечный риск	8	1	0		Абсолютная опасность (катаклизмы)

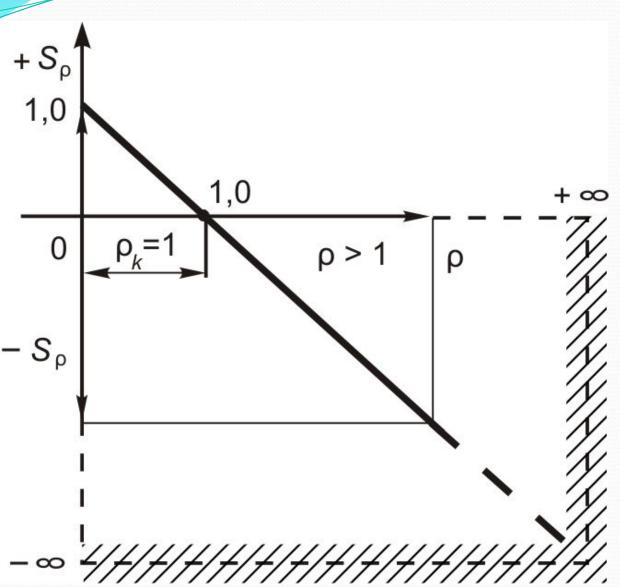


Диаграмма риск – безопасность

9.2 Подход «качество – риск – надежность»

9.2.1 Статистические показатели качества

Согласно стандарту СТБ 1234-2000, статистический показатель качества по характеристике x_i механических свойств или сопротивления износоусталостным повреждениям есть вероятность того, что ее величина будет больше нормативного значения

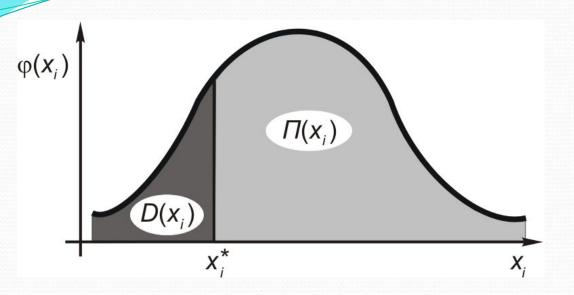
$$\Pi(x_i) = P(x_i \ge x_i^*) = \int_{x_i^*}^{\infty} \varphi(x_i) dx_i = \frac{1}{\sqrt{2\pi} S_{\bar{x}_i}} \int_{x_i^*}^{\infty} \exp\left[-\frac{1}{2} \times \left(\frac{x_i - \bar{x}_i}{S_{\bar{x}_i}}\right)^2\right] dx_i.$$
 (17)

Статистический показатель нарушения качества

$$D(x_i) = \int_{-\infty}^{x_i^*} \varphi(x_i) dx_i = \frac{1}{\sqrt{2\pi} S_{\bar{x}_i}} \int_{-\infty}^{x_i^*} \exp \left[-\frac{1}{2} \left(\frac{x_i - \bar{x}_i}{S_{\bar{x}_i}} \right)^2 \right] dx_i = 1 - \Pi(x_i).$$
 (18)

Показатель риска

$$0 \le \rho(x_i) = \frac{D(x_i)}{\Pi(x_i)} \le 1 \tag{19}$$


Показатель безопасности

$$S_{\rho}(x_i) = 1 - \rho(x_i)$$
 (20)

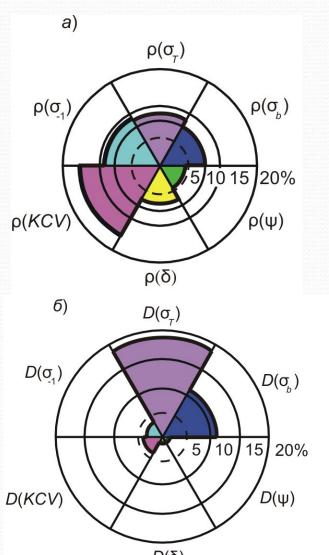
16.2 Подход «качество – риск – надежность»

Распределение характеристики свойств (сопротивления износоусталостным повреждениям)

СТБ 1234—2000 регламентирует три категории качества и соответствующего им нормативного риска

Категории качества и риска применения силовых систем

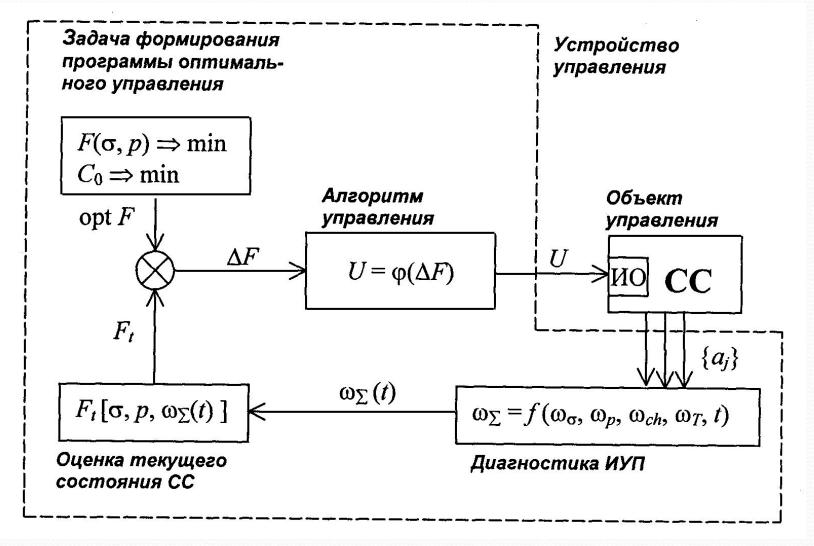
Категории	Нормативные значения показателей				
	$[\Pi(x)]$, не менее	[D(x)], %, не более	[ρ(x)]		
Высшая	0,995	0,5	0,0050		
Первая	0,990	1,0	0,0101		
Вторая	0,950	5,0	0,0526		


9.2 Подход «качество – риск – надежность»

9.2.2 Практические примеры

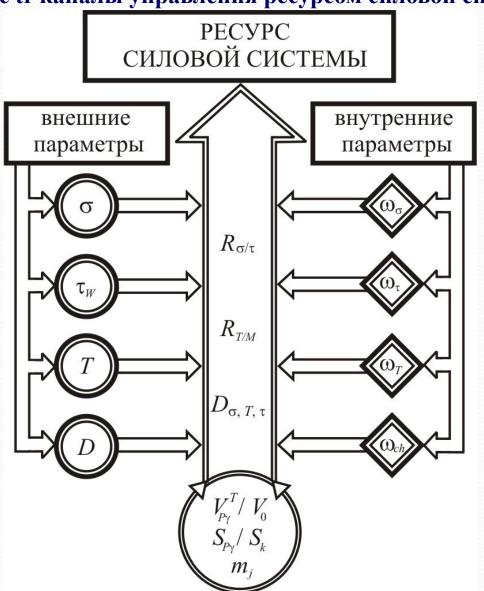
Показатели качества и риска применения (с точностью до трех знаков после запятой) по пределу текучести стали трех марок

Параметры	40X		40XH		18ХГТ	
	40 плавок	1 плавка	40 плавок	1 плавка	40 плавок	1 плавка
$\overline{\sigma}_{\tau}$	580	568	730	706	480	465
$\mathcal{S}_{\overline{\sigma}_{7}}$	48,9	24,4	40,3	27,2	34,5	20,5
$\Pi(\sigma_{_{ au}})$	0,953	1	1	1	0,921	0,956
$\rho(\sigma_{_{\scriptscriptstyle T}})$	0,049	0	0	0	0,073	0,046
$\mathcal{S}_{_{\! ho}}(\sigma_{_{\scriptscriptstyle{T}}})$	0,951	1	1	1	0,927	0,954


 $D(\delta)$ К задаче управления качеством, риском и безопасностью шатунных болтов (а) и коленчатых валов (б)

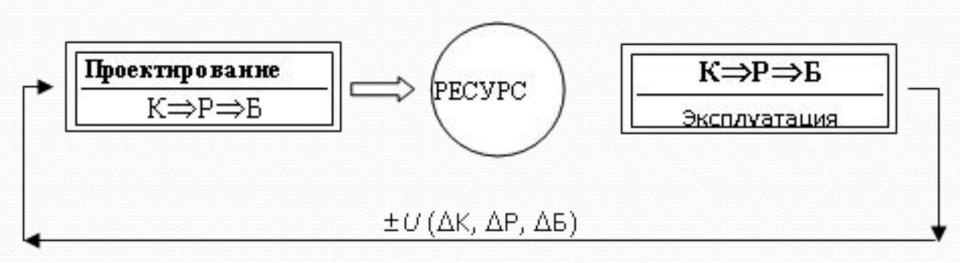
9.3 Подход «качество – риск – надежность»

9.3.1 Управление процессами износоусталостного повреждения



9.3 Подход «качество – риск – надежность»

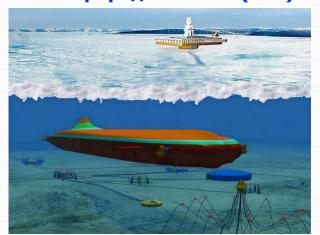
9.3.2 Основные tf-каналы управления ресурсом силовой системы



9.3 Подход «качество – риск – надежность»

9.3.3 Управление с учетом подхода качество-риск-надежность

К задаче управления ИУП с учетом подхода КРБ


ПЕРСПЕКТИВНЫЕ ПРОЕКТЫ И КРУПНЫЕ КАТАСТРОФЫ Объекты нефтегазохимии

Современный нефтеперерабатывающий комплекс

Авария на Нижневартовском НПЗ

Технология добычи и транспортировки сжиженного природного газа (СПГ) на АПЛ

18. 10: 1999

Крушение нефтяной морской платформы «Кольская» при ее транспортировке

ПЕРСПЕКТИВНЫЕ ПРОЕКТЫ И КРУПНЫЕ КАТАСТРОФЫ Объекты энергетики

Саяно-Шушенская ГЭС — Вторая жизнь

Белоярская АЭС с энергоблоком БН-800

Катастрофа на Саяно-Шушенской ГЭС

Катастрофа на Чернобыльской АЭС

ПЕРСПЕКТИВНЫЕ ПРОЕКТЫ И КРУПНЫЕ КАТАСТРОФЫ Объекты транспортного комплекса

Скоростные железнодорожные поезда со скоростью до 350-400 км/час и более

Аварии на железнодорожном транспорте

Перспективный многоцелевой истребитель пятого поколения ПАК ФА (Т-50)

Катастрофа транспортного авиалайнера в Иркутске

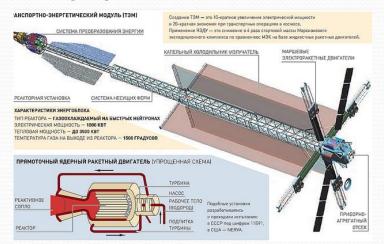
ПЕРСПЕКТИВНЫЕ ПРОЕКТЫ И КРУПНЫЕ КАТАСТРОФЫ

Объекты космического комплекса

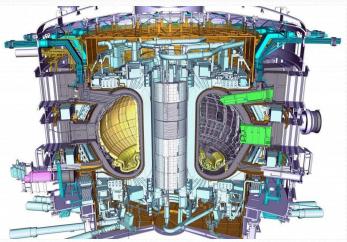
Многоразовая авиационно-космическая система МАКС с воздушным стартом

Ракетно-космический комплекс "Ангара"

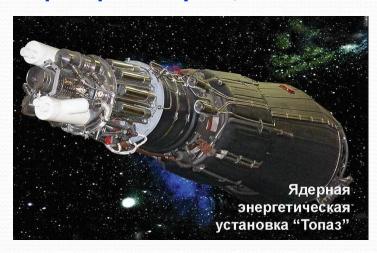
Крушение суборбитального аппарата SpaceShipTwo



Авария при старте ракеты-носителя «Протон»

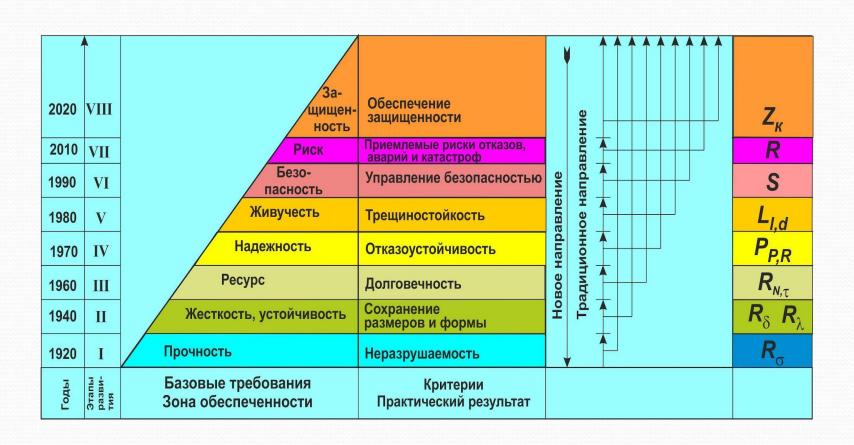


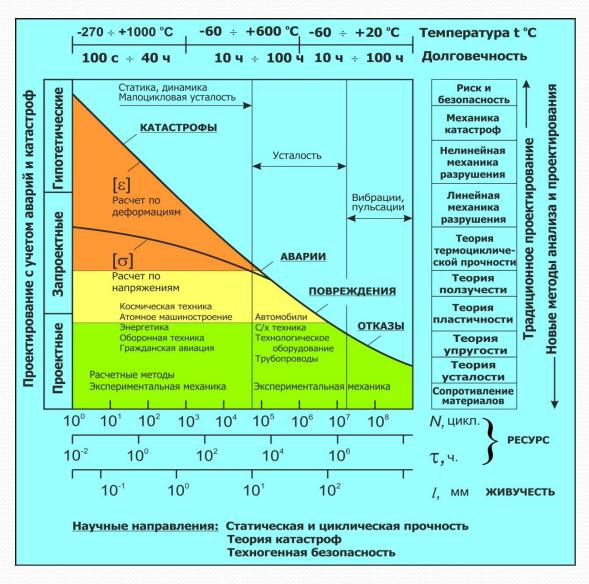
ПЕРСПЕКТИВНЫЕ ПРОЕКТЫ И КРУПНЫЕ КАТАСТРОФЫ Ядерные энергоустановки

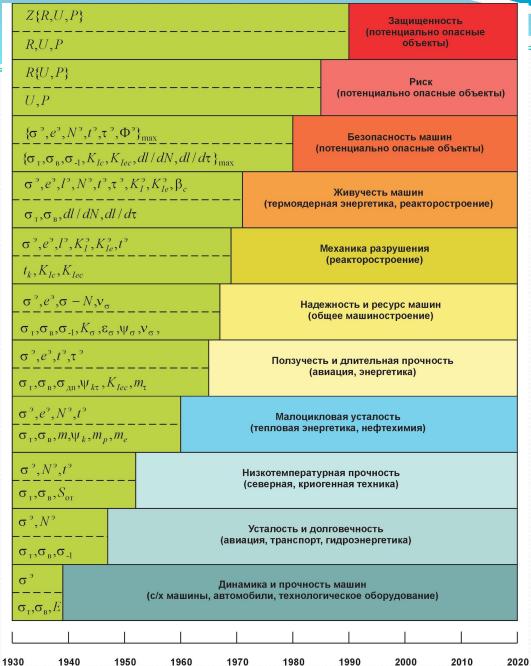

Ядерная энергоустановка мегаваттного класса

Перспективный международный термоядерный реактор ИТЭР

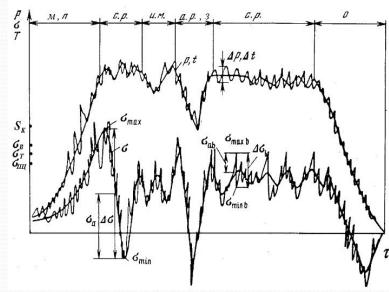
Авария при эксплуатации ЯЭУ "Топаз"


Отказы на импульсной термоядерной установке "Ангара-5"

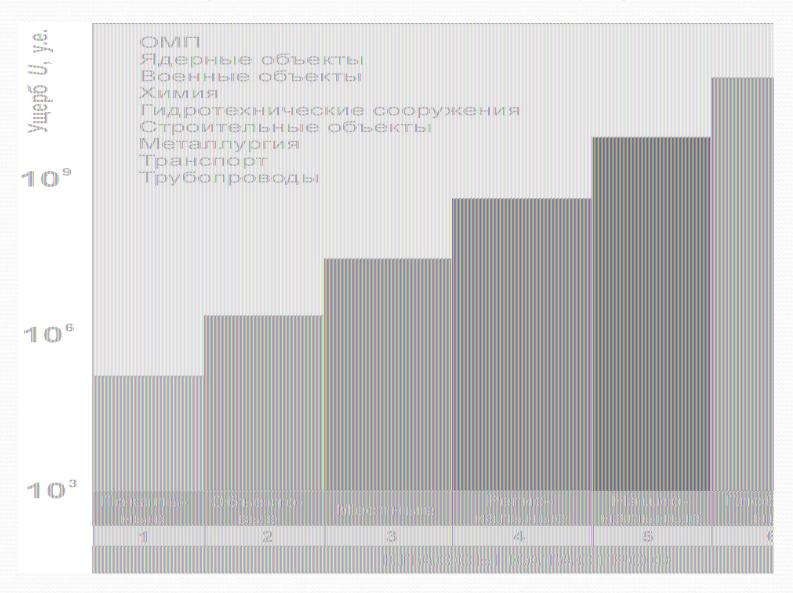

НОРМАТИВНЫЕ ТРЕБОВАНИЯ К АНАЛИЗУ БЕЗОПАСНОСТИ И РИСКОВ



ОБЩАЯ СТРУКТУРА ОБЕСПЕЧЕНИЯ РАБОТОСПОСОБНОСТИ ОБЪЕКТОВ ТЕХНОСФЕРЫ



ОБОБЩЕННАЯ ДИАГРАММА ОПАСНЫХ И ПРЕДЕЛЬНЫХ СОСТОЯНИЙ



РАЗВИТИЕ МЕТОДОВ РАСЧЕТОВ И КРИТЕРИЕВ ПРОЧНОСТИ, ДОЛГОВЕЧНОСТИ, ТРЕЩИНОСТОЙКОСТИ ДЛЯ ОБОСНОВАНИЯ ЖИВУЧЕСТИ И БЕЗОПАСНОСТИ

БАЗОВЫЕ ПАРАМЕТРЫ РИСКОВ

ОБЩАЯ СТРУКТУРА АНАЛИЗА И УПРАВЛЕНИЯ БЕЗОПАСНОСТЬЮ ПО КРИТЕРИЯМ РИСКА

ОПРЕДЕЛЯЮЩИЕ СООТНОШЕНИЯ ДЛЯ ВЗАИМОДЕЙСТВИЯ

НАУКА

$$R(\tau) = F\{P(\tau), U(\tau)\} \le [R(\tau)]$$

$$P(\tau) = F_P\{P_{\mathbf{q}}(\tau), P_{\mathbf{T}}(\tau), P_{\mathbf{T}}(\tau)\}$$

ГОСУДАРСТВО

$$R(\tau) \le [R(\tau)] = \frac{R_c(\tau)}{n_R}$$

БИЗНЕС

$$R(\tau) \leq [R(\tau)] = F_Z \{ Z_R(\tau) \}$$

ВЗАИМОДЕЙСТВИЕ

$$R(\tau) \le \left[R(\tau) \right] = \frac{1}{m_Z} \left\{ R(\tau) - \left[R(\tau) \right] \right\}$$

ФАКТОРЫ

Ч – человеческий

Т – техногенный

П – природный

 $\overline{n_R}$ – запас по рискам

 m_Z – коэффициент эффективности затрат