Статистические критерии в спортивной метрологии

- План:
- 1. Нормальное распределение и его свойства
- 2. Виды статистических критериев, их назначение.
- 3. Вычисление доверительного интервала
- 4. Алгоритм применения критериев для оценки достоверности
- 5. Критерий Стьюдента

1. Нормальное распределение и его свойства

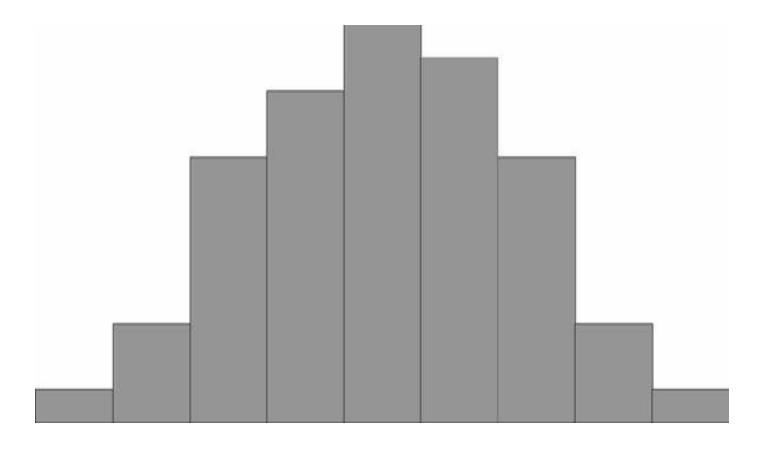
Задачи оценки достоверности результатов и определения интервала наиболее вероятных значений решаются с использованием статистических критериев.

Теоретической основой их применения служит закон нормального распределения.

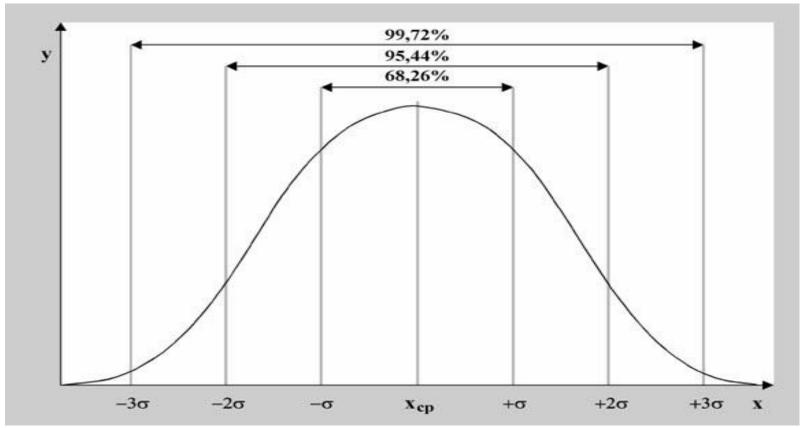
Он является основным в математической статистике, потому, что большинство признаков у живых организмов распределено между объектами по нормальному закону.

Например: рост, вес, быстрота, выносливость, способности, МПК, гибкость и другие.

Например, распределение роста у жителей города N приведено на гистограмме, где x – рост, y- количество людей с таким ростом



Нормальное распределение (кривая Гаусса)



Это идеальное распределение признаков, имеющее математическое выражение и полностью заданное. Экспериментальные результаты всегда проверяют на соответствие нормальному закону.

Свойства нормального распределения

- Относительная частота (вероятность) встречаемости конкретного диапазона может быть посчитана как отношение площади "ломтика" кривой к площади подо всей кривой.
- Суммарная площадь под кривой равна единице.
 - Мода, медиана и среднее значение совпадают.
- Кривая нормального распределения симметрична относительно среднего значения.
- Кривая нормального распределения полностью задана, если известно среднее значение Хср. и стандартное отклонение σ.
 - С вероятностью 68% значение попадет в диапазон X ср.± σ,
- С вероятностью 95% в диапазон X ср.± 2 σ,
- С вероятностью 99,7% в диапазон X ср.± 3 σ.

Закон трех сигм (3 σ)

С вероятностью 99,7% все результаты попадают в диапазон X ср.± 3 σ

В случае появления результата, отличающегося от среднего более чем на 3 σ, его отбрасывают, как ошибочный.

Вероятность попадания случайной величины в выделенный диапазон

σ				
0,0	50,00	50,00	100,00	0,00
0,1	46,02	53,98	92,04	7,97
0,2	42,07	57,93	84,14	15,85
0,3	38,21	61,79	76,42	23,58
0,4	34,46	65,54	68,92	31,29
0,5	30,85	69,15	61,70	38,30
0,6	27,43	72,57	54,86	45,15
0,7	24,20	75,80	48,40	51,61
0,8	21,19	78,81	42,38	57,63
0,9	18,41	81,59	36,82	63,19
1,0	15,87	84,13	31,74	68,17
1,1	13,57	86,43	27,14	72,87
1,2	11,51	88,49	23,02	76,99
1,3	9,68	90,32	19,36	80,64
1,4	8,08	91,92	16,16	83,85
1,5	6,68	93,32	13,36	86,64
1,6	5,48	94,52	10,96	89,04
1,7	4,46	95,54	8,92	91,08
1,8	3,59	96,41	7,18	92,81
1,9	2,87	97,13	5,74	94,25
2,0	2,28	97,72	4,56	95,45
2,1	1,79	98,21	3,58	96,43
2,2	1,39	98,61	2,78	97,22
2,3	1,07	98,93	2,14	97,85
2,4	0,82	99,18	1,64	98,36
2,5	0,62	99,38	1,24	98,76
2,6	0,47	99,53	0,94	99,07
2,7	0,35	99,65	0,70	99,31
2,8	0,26	99,74	0,52	99,49
2,9	0,19	99,81	0,38	99,63
3,0	0,14	88,86	0,28	99,73

2. Статистические критерии

Назначение: оценка достоверности различий средних величин

Виды критериев

• Параметрические:

критерий Стьюдента, критерий Фишера Условия применения: соответствие нормальному закону <u>шкала интервалов</u> или <u>отношений</u>

• Непараметрические:

Вилкоксона, Уайта (Уитни), хи-квадрат, Ван-дер-Вардена

Условия применения: шкала порядка или наименований

3. Вычисление доверительного интервала

Доверительная вероятность — это вероятность с которой результаты могут появиться в данном диапазоне значений.

Доверительный интервал - диапазон значений, в котором с данной доверительной вероятностью могут появиться оцениваемые параметры

Если X_N - среднее значение в генеральной совокупности, а X_N - среднее значение в выборке, то параметр $\mathbf{t}_{\alpha} \, \mathbf{m} = | \, \mathbf{X}_N \, - \, \mathbf{X} \mathbf{n} \, | \,$,

t " - критерий Стьюдента.

m - ошибка среднего арифметического.

Тогда, для заданной **доверительной вероятности (95%)**, **доверительный интервал** будет равен:

$$X_n - t_\alpha m < X_N < X_n + t_\alpha m$$
 Верхняя граница

4. Алгоритм применения критериев для оценки достоверности

- 1. Задается доверительная вероятность (95%) или уровень значимости (5%)
- 2. Рассчитывается теоретический критерий
- 3. По соответствующей критерию таблице находится граничное значение критерия и сравнивается с расчетным.
- 4. По результату сравнения делается вывод о достоверности различий.

5. Критерий Стьюдента

Используется для сравнения средних выборочных значений двух различных по объему выборок.

Алгоритм сравнения

- 1. Рассчитать разницу средних по абсолютной величине
- Рассчитать теоретическое значение критерия:

$$\left| \overline{x1} - \overline{x2} \right|$$

- 3. Выбрать доверительную вероятность (степень надежности выводов). Как правило принимаю $\mathbb{P} = 0.95$ ($\alpha = 0.05$)
- 4. Вычислить число степеней свободы:

$$k = n1 + n2 - 2$$

5. Найти в таблице « Граничные значения критерия Стьюдента» его значение для k и P и сравнить с теоретическим t

Сделать выводы:

- если t > tгр , то различие между сравниваемыми выборками статистически достоверно.
- если t < tгр, то различие статистически не достоверно.

Граничные значения критерия Стьюдента

	Доверительная вероятность			
Число степеней свободы f=n-1	0,90	0,95	0,99	0,999
1	6,314	12,706	63,657	636,619
2	2,920	4,303	9,925	31,598
3	2,353	3,182	5,841	12,941
4	2,132	2,776	4,604	8,610
5	2,015	2,571	4,032	6,859
6	1,943	2,447	3,707	5,959
7	1,895	2,365	3,499	5,405
8	1,860	2,306	3,355	5,041
9	1,833	2,262	3,250	4,781
10	1,812	2,228	3,169	4,587
15	1,753	2,131	2,947	4,073
20	1,725	2,086	2,845	3,850
30	1,697	2,042	2,750	3,646
40	1,684	2,021	2,704	3,551
60	1,671	2,000	2,660	3,460
120	1,658	1,980	2,617	3,373
бесконечность	1,645	1,960	2,576	3,29

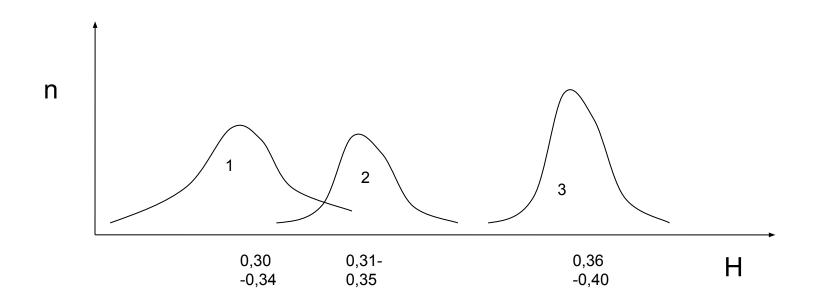
Пример 1

```
Достоверно ли различаются сила приводящих мышц рук у школьников 10, 11 и 12 лет?
```

```
1 группа (10лет) 0,32 <u>+</u> 0,02 H
```

Все группы по 30 человек

Экспериментальные распределения результатов



Решение

- 1. X1-X2 = 0.01 X2-X3 = 0.05
- 2. $m1 = \sigma / V n = 0.02 / V 30 = 0,0036$ $m2 = m3 = 0,0036 m^2 = 0,000013$
- 3. $t_1 = 0.01/V^-0.000026 = 1.96$ $t_2 = 0.05/V^-0.000026 = 9.80$
- 4. K = 30+30 2 =58 строка таблицы Р_{дов} = 0,95 столбец таблицы
- 5. $t_{1\Gamma} = t_{2\Gamma} = 2,00 \ t_1 < t_{1\Gamma}$ не достоверна разница у 10 и 11 лет $t_2 > t_{2\Gamma}$ достоверна разница у 11 и 12 лет

Пример 2

Сравните результаты
 экспериментальной (n=10) и
 контрольной группы (n=8) в конце года.

Прыжки в высоту с места, см Контр. 49,8 <u>+</u> 2,8 Эксперим. 53,3 <u>+</u> 2,4

Решение

Параметры	Контрольная группа	Экспериментальная группа
Среднее арифметическое (X)	2,4	2,8
Станд.отклонение (σ)	2,4	2,8
ошибка среднего (m)	0,76	0,996
Квадрат ошибки среднего (m²)	0,58	0,991
Критерий Стьюдента расчетный Тр = 2,83	Критерий Стьюдента Табличный Т = 2,13	Выводы: 1. Статистический Разница средних стат.достоверна(р< 0,05) 2. Педагогический Методика эффективна.

Алгоритм сравнения результатов по критерию Уайта

- 1. Результаты двух групп ранжируют вместе.
- 2. Суммируют ранги экспериментальной группы и контрольной отдельно. Меньшая сумма рангов является расчетным критерием Уайта.
- 3. Находят по таблице граничное значение критерия Уайта.
- 4. Если расчетный критерий меньше табличного, то разница достоверна.

Пример 3

- Оценить эффективность «алгоритмической» методики обучения гимнастическим упражнениям. Оценки за выполнение упражнения в конце обучения в контрольной и эксперим. группах :
- Контр (n=7) 7,5 7,8 7,9 8,0 8,1 8,2 8,5
- Эксп. (n=8) 8,4 8,5 8,6 8,8 9,0 9,1 9,2 9,4

Решение

• 1. Проранжируем (упорядочим) результаты групп вместе и расставим ранги

```
Рез: 7,5 7,8 7,9 8,0 8,1 8,2 8,4 8,5 8,5 
Ранги(R) 1 2 3 4 5 6 7 8,5 8,5 
8,6 8,8 9,0 9,1 9,2 9,4 
10 11 12 13 14 15
```

- 2. Найдем сумму рангов для каждой группы $\Sigma R_9 = 90.5$ $\Sigma R_K = 29.5$ критерий Уайта
- 3. Находим по таблице граничное значение критерия для надежности 95%: столбец =7 (меньший объем выборки), строка = 8 (больший объем выборки)
 Критерий Уайта (табл) = 38
- 4. Так как 38 > 29,5, то разница достоверна и методика «алгоритмического типа» эффективна. (p<0,05)

Литература Начинская С.В. Спортивная метрология с. 59-87.

В учебнике много примеров на применение других критериев с решением.