# Задачи к уроку

 $11 \Gamma - 19.09$ .

11 B - 20.09

- 2. ЭДС источника тока 12 В, а его внутреннее сопротивление равно 2 Ом.
- а) Чему равна сила тока в цепи, если сопротивление внешней цепи равно 4 Ом?
- б) Какова максимально возможная сила тока в цепи? При каком сопротивлении внешней цепи это имеет место?

- 3. При внешнем сопротивлении 2 Ом сила тока в цепи равна 1,5 A, а при внешнем сопротивлении 4 Ом сила тока равна 1 A.
- а) Чему равно внутреннее сопротивление источника?
- б) Чему равна ЭДС источника?

**5.** Покажите, что сила тока короткого замыкания выражается формулой

$$I_{\text{K3}} = \frac{\mathscr{E}}{r}.$$
 (9)

8. При каком отношении внешнего сопротивления к внутреннему сопротивлению КПД источника тока равен: 50 %; 80 %? Почему случай, когда КПД источника тока равен 100 %, не представляет практического интереса?

## Лабораторная работа №1

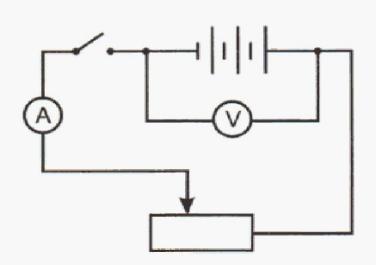
### 1. ОПРЕДЕЛЕНИЕ ЭДС И ВНУТРЕННЕГО СОПРОТИВЛЕНИЯ ИСТОЧНИКА ТОКА

 $_{Lenb}$  работы: экспериментально определить ЭДС  $_{\it E}$  и внутреннее сопротивление  $_{\it F}$  источника тока.

Оборудование: источник постоянного тока, амперметр, вольтметр, реостат, ключ, соединительные провода.

#### Описание работы

Измерив силу тока в цепи и напряжение на клеммах источника при двух различных значениях внешнего сопротивления и записав в обоих случаях закон Ома для полной цепи, получим  $\mathscr{E} = U_1 + I_1 r$ ,  $\mathscr{E} = U_2 + I_2 r$ , где  $\mathscr{E} \longrightarrow \Im \mathbb{L} C$  источника,  $r \longrightarrow \mathrm{внутреннеe}$  сопротивление источника,  $I_1$ ,  $U_1 \longrightarrow \mathrm{значения}$  силы тока и напряжения при одном внешнем сопротивлении цепи, а  $I_2$ ,  $U_2 \longrightarrow \mathrm{при}$  другом.


Написанные соотношения являются системой двух линейных уравнений с двумя неизвестными  $\mathscr E$  и r. Решая эту систему, полу-

чим 
$$\mathscr{E} = \frac{I_1U_2 - I_2U_1}{I_1 - I_2}$$
,  $r = \frac{U_2 - U_1}{I_1 - I_2}$ .

# Лабораторная работа №1

#### Ход работы

- 1. Соберите электрическую цепь по изображенной на рисунке схеме.
- 2. Установите ползунок реостата примерно в среднее положение, измерьте силу тока  $I_1$  и напряжение  $U_1$ .
- 3. Передвинув ползунок реостата, измерьте  $I_2$  и  $U_2$ .
- **4.** По приведенным выше формулам вычислите r и  $\mathscr{E}$ .



5. Результаты измерений и вычислений запишите в таблицу, помещенную в тетради для лабораторных работ. Ниже приведен образец этой таблицы.

| $I_2$ , A | $U_{_{\scriptscriptstyle 1}}$ , B | $U_2$ , B                             | r, Om                         | <b>€</b> , B                           |
|-----------|-----------------------------------|---------------------------------------|-------------------------------|----------------------------------------|
|           |                                   |                                       |                               |                                        |
|           |                                   |                                       |                               |                                        |
|           | <i>I</i> <sub>2</sub> , A         | I <sub>2</sub> , A U <sub>1</sub> , B | $I_2$ , A $U_1$ , B $U_2$ , B | $I_2$ , A $U_1$ , B $U_2$ , B $r$ , Om |

6. Запишите в тетради для лабораторных работ вывод: *что вы* измеряли и какой получен результат.