Функции нескольких переменных

- Определение функции n (двух) переменных.
- Геометрическая интерпретация определения.
- Линия уровня функции двух переменных. Множество уровня функции n переменных.
- Предел и непрерывность функции двух переменных.
- Частные производные функции двух переменных.
- Геометрический смысл частных производных.
- Дифференцируемость и полный дифференциал
- функции двух переменных.
- Производная сложной функции
- Производная функции по направлению
- ∣ Градиент функции
- Экстремум функции двух переменных

Основные понятия

Определение

Упорядоченный набор n действительных чисел $x = (x_1, x_2, ..., x_n)$ называется n-мерным вектором.

Определение

Множество n-мерных векторов, в котором введены операции:

сложения векторов $x+y=(x_1+y_1,x_2+y_2,...,x_n+y_n)$ умножение вектора на число $\lambda x=(\lambda x_1,\lambda x_2,...,\lambda x_n)$ называется n-мерным векторным пространством и обозначается R^n

Основные понятия

Рассмотрим Товорят, что на множестве X задана функция ст переменных, обозначаемая f, если задано правило, сопоставляющее каждому вектору $x = (x_1, x_2, ..., x_n) \in X$ одно вполне определенное число u = f(x), называемое значением функции в $u = f(x_1, x_2, ..., x_n)$

точке х.При этом записывают

Множество X – область определения функции п переменных. $\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n$ называются независимыми переменными; и – зависимая переменная

Примеры функций нескольких переменных

1. функция двух переменных

$$u = x_1^2 + tg(x_1 + x_2)$$

2. функция трех переменных

$$u = x^2 + 3yz - 4$$

3. функция n переменных

$$u = x_1 + 2x_2 + 3x_3 + \dots + nx_n$$

Функция двух переменных

Замечание

Теория излагается для функций двух переменных, при этом почти все понятия и теоремы переносятся на случай n>2

Функция двух переменных

$$z = f(x, y)$$
 X – область определения функции

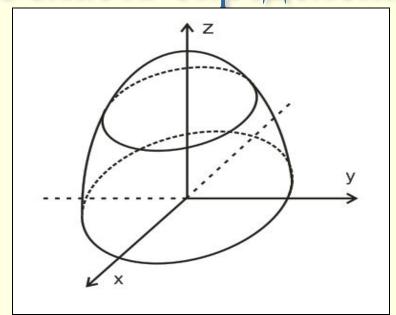
Геометрическая интерпритация Каждой точке $M_0(x_0,y_0)\in X$ в системе координат OXYZ соответствует точка $M(x_0, y_0, z_0)$, где $z_0 = f(x_0, y_0)$ аппликата М.

Совокупность всех таких точек М представляет собой поверхность, которая геометрически изображает данную функцию

Пример функции двух переменных

$$z = \sqrt{1 - x^2 - y^2}$$

Область определения:



$$1-x^2-y^2 \ge 0$$
 $x^2+y^2 \le 1$ круг центр (0;0) и R=1

Данная функция геометрически изображается верхней полусферой радиуса 1.

Линия уровня. Множество уровня.

Определение

Линией уровня функции двух перемейных (x,y) называется множество точек на плоскости таких, что во всех этих точках значение функции одно и то же f(x,y)=c, где c=const Число с называется уровнем.

В предыдущем примере линия уровня – окружность.

Определение

Для функции n переменных $u = f(x_1, x_2, ..., x_n)$ множество точек, удовлетворяющих условию $f(x_1, x_2, ..., x_n) = c$, где c = const называется множеством уровня.

Предел функции

Пусть функция z=f(x,y) определена в некоторой окрестности точки $M_0(x_0,y_0)$, кроме быть может самой точки

Определение

$$\lim_{\substack{x \to x_0 \\ \Leftrightarrow (\forall \varepsilon > 0)}} f(x, y) = A \Leftrightarrow$$

$$\Leftrightarrow (\forall \varepsilon > 0)(\exists \delta = \delta(\varepsilon) > 0)(\forall x \neq x_0 \land y \neq y_0)$$

$$\sqrt{(x - x_0)^2 + (x - x_0)^2} < \delta) \Rightarrow |f(x, y) - A| < \varepsilon$$

Если предел существует, то он не зависит от пути (слева/ справа),

$$= \lim_{\rho \to 0} \frac{\ln(1 - \rho^2)}{\rho} = \left[\frac{0}{0}\right] = \lim_{\rho \to 0} \frac{-2\rho}{1 - \rho^2} = 0$$

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\ln(1 - x^2 - y^2)}{\sqrt{x^2 + y^2}} = \left[\frac{0}{0}\right] = \begin{vmatrix} \sqrt{x^2 + y^2} = \rho \\ 1 - x^2 - y^2 = 1 - \rho^2 \\ x \to 0 \land y \to 0 \Rightarrow \rho \to 0 \end{vmatrix} =$$

$$z = \frac{\ln(1 - x^2 - y^2)}{\sqrt{x^2 + y^2}}$$

Пример

Непрерывность функции

Определение

Функция z=f(x,y) называется непрерывной в точке $M_0(x_0,y_0)$, если:

- 1. эта функция определена в точке М₀ и ее окрестности ;
- 2. существует $\lim f(x, y)$

$$y \rightarrow y_0$$

3. $\lim f(x, y) = f(x_0, y_0)$ $x \rightarrow x_0$ $y \rightarrow y_0$

Тредел (непрерывность) функции двух переменных обладает аналогичными свойствами предела

Частные производные

$$z=f(x,y)$$

Частное приращение функции z по x

$$\Delta_x z = f(x + \Delta x, y) - f(x, y)$$

Частное приращение функции z по у

$$\Delta_{y}z = f(x, y + \Delta y) - f(x, y)$$

Определение

Частной производной функции нескольких переменных по одной из этих переменных называется предел отношения соответствующего частного приращения функции к приращению соответствующего аргумента, когда приращение

аргумента стремится к нулю.
$$\frac{\partial z}{\partial x} = f'_x(x,y) = z'_x = \lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x}; \ \frac{\partial z}{\partial y} = f'_y(x,y) = z'_y = \lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y}$$

Пример

При вычислении частной производной функции нескольких переменных по одной из этих переменных используют правило дифференцирования функции одной переменной, считая все остальные переменные постоянными.

$$z = x^2 + 7x^2y^3 + y + 4$$

$$z = e^{x^3 + y^2}$$

$$z_x' = 2x + 14xy^3$$

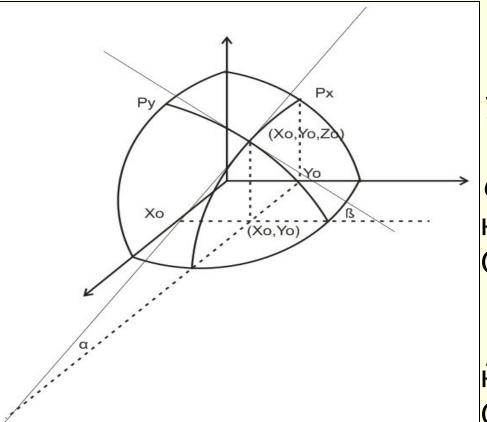
$$z'_{v} = 21x^2y^2 + 1$$

$$z_x' = e^{x^3 + y^2} \cdot 3x^2$$

$$z_y' = e^{x^3 + y^2} \cdot 2y$$

Геометрический смысл частных производных

Графиком функции z=f(x,y) является поверхность Р



Px (Py) — линия пересечения поверхности P с плоскостью $y=y_0 (x=x_0)$

$$f_x'(x_0, y_0) = tg\alpha$$

α – угол наклона касательной к линии Р_х относительно оси ОХ

$$f_{v}'(x_{0},y_{0}) = tg\beta$$

β – угол наклона касательной к линии Р_у относительно оси ОҮ

Частная производная функции по некоторой переменной показывает скорость изменения функции в направление соответствующей оси

Частные производные второго порядка

$$z=f(x,y)$$

$$z''_{xx} = \frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) \qquad z''_{xy} = \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right)$$
$$z''_{yy} = \frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) \qquad z''_{yx} = \frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right)$$

Частная производная второго и более высокого

порядка, взятая по различным переменным называется смешанной частной производной

Понятие дифференцируемой функции

Пусть функция z=f(x,y) определена в некоторой окрестности точки М(х,у).

Полное приращение функции z=f(x,y) в точке M(x,y)

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

Определение
Функция z=f(x,y) называется дифференцируемой в точке М(x,y), если ее полное приращение в этой точке

можно представить в виде
$$\Delta z = \frac{\partial z}{\partial x} \cdot \Delta x + \frac{\partial z}{\partial y} \cdot \Delta y + \alpha \cdot \Delta x + \beta \cdot \Delta y$$

$$\alpha = \alpha(\Delta x, \Delta y) \to 0$$
 $\beta = \beta(\Delta x, \Delta y) \to 0$

$$\Delta x \to 0 \land \Delta y \to 0$$
 $\Delta x \to 0 \land \Delta y \to 0$

Понятие дифференциала функции

Определение

Дифференциалом функции z=f(x,y) называется главная, линейная относительно Δx и Δy , часть полного приращения функции, равная сумме произведений частных производных этой функции на приращения соответствующих независимых переменных

Обозначение:
$$dz = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y}$$

Рассмотрим функции f(x,y)=x, g(x,y)=y. Вычислим их дифференциалы: $df=dx=\Delta x \ dg=dy=\Delta y$

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

Необходимое условие дифференцируемости функции

Теорема

 (необходимое условие дифференцируемости функции)

 Если функция z=f(x,y) дифференцируема в

 некоторой
 некоторой

 точке M(x,y), то она непрерыв в этой точке и имеет

 в ней частные производные $\frac{\partial x}{\partial x}$ $\frac{\partial y}{\partial y}$

Обратное не верно

Из непрерывности функции в точке или существования частных производных не следует дифференцируемость функции в точке

Достаточное условие дифференцируемости функции

Теорема

(достаточное условие дифференцируемости функции)

Если функция z=f(x,y) имеет непрерывные частные

производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ в точке M(x,y), то она

дифференцируема в этой точке

Сложная функция

Если z=f(x,y) — функция двух переменных х и у, каждая из которых является функцией независимой переменной t, то есть x=x(t), y=y(t), то функция z=f(x(t),y(t)) является сложной функцией одной переменной.

Пример:

$$z = x^{2} \cdot y^{3}$$

$$x = \cos t \qquad \Longrightarrow \qquad z(t) = \cos^{2} t \cdot \sin^{3} t$$

$$y = \sin t$$

Производная сложной функции

Теорема

(о производной сложной функции)

Если z=f(x,y) дифференцируемая в точке M(x,y) функция и x=x(t); y=y(t) дифференцируемые функции независимой переменной t, то производная сложной функции z(t)=f(x(t),y(t)) вычисляется по формуле

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

Найти производную сложной функции

$$z = x^{2} \cdot y^{3}$$

$$x = \cos t \quad y = \sin t$$

$$z(t) = \cos^{2} t \cdot \sin^{3} t$$

$$\frac{dz}{dt} = z'(t) = 2xy^{3}(\cos t)'_{t} + 3y^{2}x^{2}(\sin t)'_{t} =$$

$$= 2xy^{3}(-\sin t) + 3y^{2}x^{2}\cos t =$$

$$= -2\sin^{4}t\cos t + 3\cos^{3}t\sin^{2}t$$

Проверка:

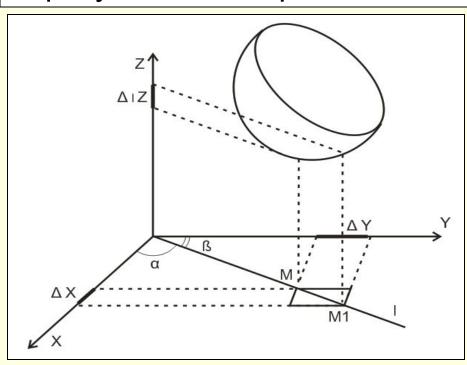
$$(\cos^2 t \cdot \sin^3 t)'_t = 2\cos t(-\sin t)\sin^3 t + \cos^2 t \sin^2 t \cos t =$$

$$= -2\cos t \sin^4 t + 3\cos^3 t \sin^2 t$$

Производная функции по направлению

Пусть функция z=f(x,y) определена в некоторой окрестности точки M(x,y).

l — направление, задаваемое единичным вектором $\stackrel{\bowtie}{e}(\cos\alpha,\cos\beta)$,где $\cos\alpha,\cos\beta$ -направляющие косинусы - косинусы углов, образуемых вектором $\stackrel{\bowtie}{e}$ с осями координат



 $z'_{l} = \frac{\partial f}{\partial l}(x, y) = \lim_{h \to 0} \frac{\Delta_{l} z}{h}$

Переместим точку
$$M(x,y)$$
 в точку $M_1(x+\Delta x,y+\Delta y)$ в направлении l В результате перемещения $z=f(x,y)$ получит приращение $\Delta_l z = f(x+\Delta x,y+\Delta y)-f(x,y)$ $\Delta_l z$ - приращение функции z в

направлении lОбозначим $\left| MM_1 \right| = h$, тогда $\Delta x = h \cdot \cos \alpha$ $\Delta y = h \cdot \cos \beta$

$$\Delta_l z = f(x + h\cos\alpha, y + h\cos\beta) - f(x, y)$$

Производная функции по направлению

Теорема (о вычислении производной функции по направлению) Если функция f(x,y) дифференцируема в точке (x0,y0),то в

точке функция f(x,y) имеет производную по любому направлению $\overset{\iota}{cos}$, задаваемому направляющими косинусами $\overset{\iota}{z_l} = \overset{\iota}{z_x} \cdot \overset{\iota}{cos} \alpha + \overset{\iota}{z_y} \cdot \overset{\iota}{cos} \beta$

 $f(x^0 + h\cos\alpha, y^0 + h\cos\beta)$ - функция переменных х и у, каждая из которых является функцией одной переменной h:

$$x(h) = x^{0} + h \cos \alpha$$
 $y(h) = y^{0} + h \cos \beta$

Если h=0, то
$$x(0) = x^0$$
, $y(0) = y^0$ По правилу вычисления производной сложной функции:
$$\frac{df}{dh}(0) = \frac{\partial f}{\partial x}(x^0, y^0) \cdot (x^0 + h \cos \alpha)'_h + \frac{\partial f}{\partial y}(x^0, y^0) \cdot (y^0 + h \cos \beta)'_h = \frac{\partial f}{\partial x}(x^0, y^0) \cdot \cos \alpha + \frac{\partial f}{\partial y}(x^0, y^0) \cdot \cos \beta = z'_x \cos \alpha + z'_y \cos \beta$$

$$\frac{df}{dh}(0) = \lim_{h \to 0} \frac{f(x^0 + h\cos\alpha, y^0 + h\cos\beta) - f(x^0, y^0)}{h} = \frac{\partial f}{\partial l}(x^0, y^0) = z_l'$$

Градиент функции

Определение

Вектор с координатами $(\frac{\partial f}{\partial x}(M_0), \frac{\partial f}{\partial v}(M_0))$ называется

градиентом функции f(x,v) в точке M₀.

Обозначение: grad $f(M_0)$ или $\nabla f(M_0)$

 $\overset{\,\,\,\,\,\,}{e}(\coslpha,\coseta)$ - единичный вектор

$$(gradf(M_0), \stackrel{\boxtimes}{e}) = \frac{\partial f}{\partial x}(M_0)\cos\alpha + \frac{\partial f}{\partial y}(M_0)\cos\beta = \frac{\partial f}{\partial l}(M_0)$$

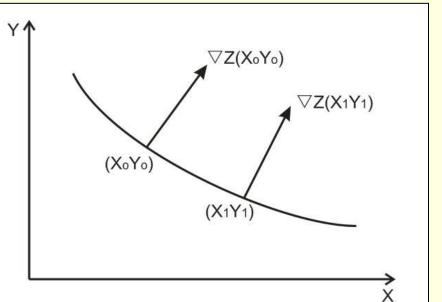
Производная по направлению есть скалярное произведение градиента функции и единичного вектора, задающего направление l .

Градиент функции

Градиент функции в данной точке gradf(M0) характеризует направление наибыстрейшего роста функции в этой точке **Теорема**

Пусть задана дифференцируемая функция z=f(x,y) и пусть grad f(M0) ≠ 0. Тогда градиент перпендикулярен линии уровня, проходящей через данную точку

Линии уровня можно построить следующим образом



- 1. строим $\nabla z(x_0, y_0)$
- 2. задаем направление, перпендикулярное градиенту 3. строим $\nabla_Z(x_1, y_1)$, причем
- точка (x_1, y_1) достаточна близка к точке (x_0, y_0)

Точки максимума и минимума функции

Определение

Точка $M(x_0,y_0)$ называется точкой максимума (минимума) функции z=f(x,y), если существует δ - окрестность точки (x_0,y_0) , такая что для любой точки (x,y) из этой окрестности (за исключением точки (x_0,y_0)) выполняется неравенство $f(x,y) < f(x_0,y_0) \ (f(x,y) > f(x_0,y_0))$

Точки экстремума функции лежат внутри области определения функции

Максимум и минимум функции имеют локальный характер

Необходимое условие экстремума функции

Теорема

(необходимое условие экстремума функции)

Если в точке $M(x_0,y_0)$ дифференцируемая функция z=f(x,y) имеет экстремум, то ее частные производные в этой точке равны нулю, то есть $f_x'(x_0,y_0)=0$ и $f_y'(x_0,y_0)=0$

Доказательство:

Зафиксируем одну переменную, например y_0 . Получим $f(x,y_0)=\varphi(x)$ - функцию одной переменной, которая имеет экстремум при $x=x_0$

Согласно необходимому условию экстремума функции одной переменной $\varphi'(x_0)=0 \Rightarrow f_x'(x_0,y_0)=0$ Аналогично $f_y'(x_0,y_0)=0$

Стационарные и критические точки

Точка (x_0, y_0) , в которой частные производные первого порядка функции ределение z=f(x,y) равны нулю, то есть $f'_x(x_0, y_0) = 0$ $f'_{v}(x_{0},y_{0}) = 0$ называется стационарной точкой функции z=f(x,y)

пределение

Стационарные точки и точки, в которых хотя бы одна частная производная не существует, называются критическими точками

Равенство нулю частных производных является необходимым, но не достаточным условием существования экстремума.

Достаточное условие экстремума функции

Теорема (достаточное условие экстремума функции)

- Пусть функция z=f(x,y) определена в некоторой окрестности стационарной точки (x_0, y_0) . Пусть функция имеет в этой точке непрерывные частные производные второго порядка $A = f''_{xx}(x_0, y_0)$, $B = f''_{xy}(x_0, y_0)$, $C = f''_{yy}(x_0, y_0)$. Обозначим $\Delta = AC B^2$ Тогда:
- 1) если $\Delta > 0$, то функция f(x,y) в точке (x_0,y_0) имеет экстремум: максимум, если A < 0; минимум, если A > 0; 2) если $\Delta < 0$, то функция f(x,y) в точке (x_0,y_0) экстремума не имеет; 3) если $\Delta = 0$, то вопрос о наличии экстремума

остается открытым

Найти экстремум функции

$$z = 3x^2y - x^3 - y^4$$

$$z'_{x} = 6xy - 3x^{2}$$
 $z'_{y} = 3x^{2} - 4y^{3}$

Найдем стационарные точки, решая систему уравнений:

$$\begin{cases} 6xy - 3x^2 = 0 \\ 3x^2 - 4y^3 = 0 \end{cases} \Rightarrow M_1(6,3); M_2(0,0)$$

$$z''_{xx} = 6y - 6x$$
 $z''_{xy} = 6x$ $z''_{yy} = -12y^2$

В точке $M_1(6,3)$ имеем A=-18, B=36, C=-108 $\implies \Delta = 648 > 0$

так как A<0 $\Longrightarrow M_1$ - точка максимума; $z_{\rm max} = z(6,3) = 27$

В точке
$$M_2(0,0)$$
 имеем A=0, B=0, C=0 $\Longrightarrow \Delta = 0$

Дополнительные исследования: z(0,0)=0

При x=0,
$$y \neq 0$$
 $z = -y^4 < 0$

При $x \neq 0$, y = 0 $z = -x^3 \Longrightarrow$ в точке M_2 экстремума нет

Найти экстремум функции

$$z = \frac{1}{2}xy + (47 - x - y)(\frac{x}{3} + \frac{y}{4})$$

$$z'_{x} = -\frac{1}{12}y - \frac{2}{3}x + \frac{47}{3}$$
 $z'_{y} = -\frac{1}{2}y - \frac{1}{12}x + \frac{47}{4}$

Найдем стационарные точки, решая систему уравнений:

$$\begin{cases} -\frac{1}{12}y - \frac{2}{3}x + \frac{47}{3} = 0\\ -\frac{1}{2}y - \frac{1}{12}x + \frac{47}{4} = 0 \end{cases} \Rightarrow M(21,20)$$

$$M_{2}$$

$$A = z''_{xx} = -\frac{2}{3}, B = z''_{xy} = -\frac{1}{12}, C = z''_{yy} = -\frac{1}{2}$$
 $\Delta > 0$

Так как A<0 $\implies M(21,20)$ - точка максимума $z_{\rm max}=282$