Hypothesis Testing for Proportions

Essential Statistics

Hypothesis Test for Proportions

- In this section, you will learn how to test a population proportion, p. If $n p \geq 10$ and $n(1-p) \geq 10$ for a binomial distribution, then the sampling distribution for \hat{p} is normal with $\mu_{\hat{p}}=p$ and $\sigma=\sqrt{p(1-p) / n}$

"Since the p-value < (>) α, I reject

1) A (fail to reject) the H_{0}. There is (is not) sufficient evidence to suggest
2) V that H_{a} (in context)."

$$
H_{0}: p=12 \text { vs } H_{a}: p(<, \geqslant \text {, or } 7) 12
$$

3) Calculate the test statistic \& p-value
4) Write a statement in the context of the problem.

What is the p-value

- The P-Value is the probability of obtaining a test statistic that is at least as extreme as the one that was actually observed, assuming the null is true.

O p-value $<>) \alpha$, I reject (fail to reject) the H_{0}.

How to calculate the P-value

O Under Stat - Tests

- Select 1 Prop Z-test
- Input p, x, and n
- P is claim proportion

X is number of sampling matching claim
N is number sampled

- Select correct Alternate Hypothesis
- Calculate

Reading the Information

- Provides you with the z score
- P-Value
- Sample proportion
- Interpret the p-value based off of your Confidence interval

1) right-tail test $z=1.6$

$$
P \text {-value }=.0548
$$

2) two-tail test $z=2.3$

P-value $=(.0107) 2=.0214$

What is α

a Represents the remaining percentage of our confidence interval. 95% confidence interval has a 5\% alpha.

Ex. 1: Hypothesis Test for a Proportion

- A medical researcher claims that less than 20\% of American adults are allergic to a medication. In a random sample of 100 adults, 15% say they have such an allergy. Test the researcher's claim at $\alpha=0.01$.

SOLUTION

- The products $\mathrm{np}=100(0.20)=20$ and $\mathrm{nq}=100(\mathrm{o} .80)=$ 80 are both greater than 10. So, you can use the z-test. The claim is "less than 20\% are allergic to a medication." So the null and alternative hypothesis are:

$$
\mathrm{H}_{\mathrm{o}}: \mathrm{p}=0.2 \text { and } \mathrm{H}_{\mathrm{a}}: \mathrm{p}<0.2 \text { (Claim) }
$$

Solution By HAND continued . . .

- Because the test is a left-tailed test and the level of significance is $\alpha=0.01$, the critical value is $z_{0}=-2.33$ and the rejection region is $\mathrm{z}<-2.33$. Using the z -test, the standardized test statistic is:

$$
z=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}}=\frac{0.15-0.20}{\sqrt{\frac{(0.20)(0.80)}{100}}} \approx-1.25
$$

SOLUTION Continued . . .

- The graph shows the location of the rejection region and the standardized test statistic, z . Because z is not in the rejection region, you should decide not to reject the null hypothesis. In other words, there is not enough evidence to support the claim that less than 20\% of Americans are allergic to the medication.

Solutions Continued......

Interpretation

Since the $.1056>01$, I fail to reject the H_{0} There is not sufficient evidence to suggest that 20% of adults are allergic to medication.

Ex. 2 Hypothesis Test for a Proportion

- Harper's Index claims that 23\% of Americans are in favor of outlawing cigarettes. You decide to test this claim and ask a random sample of 200 Americas whether they are in favor outlawing cigarettes. Of the 200 Americans, 27% are in favor. At $\alpha=0.05$, is there enough evidence to reject the claim?

SOLUTION:

- The products $\mathrm{np}=200(0.23)=45$ and $\mathrm{nq}=200(0.77)=$ 154 are both greater than 5 . So you can use a z-test. The claim is " 23% of Americans are in favor of outlawing cigarettes." So, the null and alternative hypotheses are:
$H_{o}: p=0.23($ Claim $)$ and $H_{a}: p \neq 0.23$

SOLUTION continued . . .

- Because the test is a two-tailed test, and the level of significance is $\alpha=0.05$.
- $\mathrm{Z}=1.344$
- $\mathrm{P}=.179$
- Since the $.179>.05$, I fail to reject the H_{0} There is not sufficient evidence to suggest that more or less than 23% of Americans are in favor of outlawing cigarette's.

SOLUTION Continued . . .

- The graph shows the location of the rejection regions and the standardized test statistic, z .
- Because z is not in the rejection region, you should fail to reject the null hypothesis. At the 5% level of significance, there is not enough evidence to reject
 the claim that 23% of Americans are in favor of outlawing cigarettes.

Ex. 3 Hypothesis Test a Proportion

- The Pew Research Center claims that more than 55% of American adults regularly watch a network news broadcast. You decide to test this claim and ask a random sample of 425 Americans whether they regularly watch a network news broadcast. Of the 425 Americans, 255 responded yes. At $\alpha=$ 0.05 , is there enough evidence to support the claim?

SOLUTION:

- The products $\mathrm{np}=425(0.55)=235$ and $\mathrm{nq}=$ $425(0.45)=191$ are both greater than 5 . So you can use a z-test. The claim is "more than 55% of Americans watch a network news broadcast." So, the null and alternative hypotheses are:
$H_{o}: p=0.55$ and $H_{a}: p>0.55$

SOLUTION continued . . .

- Because the test is a right-tailed test, and the level of significance is $\alpha=0.05$.

O $\mathrm{Z}=2.072$

- P-value = . 019
- Since the $0.019<.05$, I reject the H_{o}. There is sufficient evidence to suggest that 20% of adults are allergic to medication.

SOLUTION Continued . . .

- The graph shows the location of the rejection region and the standardized test statistic, z . Because z is in the rejection region, you should decide to There is enough evidence at the 5% level of significance, to support the claim that 55% of American adults regularly
 watch a network news broadcast.

