В.Б. Тарасов

МГТУ им. Н.Э.Баумана,

Кафедра «Компьютерные системы автоматизации производства»

e-mail: tarasov@rk9.bmstu.ru

ЛЕКЦИЯ 4. СИСТЕМЫ МОДАЛЬНОСТЕЙ И НЕКЛАССИЧЕСКИЕ МЕРЫ В ИСКУССТВЕННОМ ИНТЕЛЛЕКТЕ

ИНФОРМАЦИОННАЯ СТРУКТУРА АГЕНТА: ЕДИНСТВО ОПИСАНИЙ И ПРЕДПИСАНИЙ

Функционирование любого агента опирается как на *описания*, так и на пресписания. Описания содержат информацию о состояниях среды, воспринимаемых агентом, а предписания – о возможных действиях агента на эту среду.

Истинность: соответствие между объектом и его описанием (первичен объект)
Полезность: соответствие между предписанием и его объектом (первично
предписание)

СИСТЕМЫ МОЛАПЬНОСТЕЙ:

ЕДИНЫЙ ПОДХОД К ПРЕДСТАВЛЕНИЮ СИСТЕМ МОДАЛЬНОСТЕЙ НА БАЗЕ МНОГОЗНАЧНЫХ ЛОГИК						
ВИДЫ МОДАЛЬНОСТЕЙ	Сильная положительная SPM	Слабая положительная WPM	Слабая отрицательная WNM	Сильная отрицательная SNM		
Алетические: онтологии	Необходимость N	Возможность М	Случайность Q	Невозможность Ү		
Доксастические:	Уверенность	Предположение	Сомнение	Отвержение		

Алетические: онтологии	Необходимость	Возможность	Случайность	Невозможность
	N	М	Q	Ү
Доксастические:	Уверенность	Предположение	Сомнение	Отвержение
мнения	BEL	НҮР	DBT	DEN
Эпистемические: знания	Верификация	Подтверждение	Неразреши- мость	Фальсификация

МОДАЛЬНОСТЕЙ	положительная	положительная	отрицательная	отрицательная
	SPM	WPM	WNM	SNM
Алетические: онтологии	Необходимость	Возможность	Случайность	Невозможность
	N	М	Q	Ү
Доксастические:	Уверенность	Предположение	Сомнение	Отвержение
мнения	BEL	НҮР	DBT	DEN
Эпистемические: знания	Верификация	Подтверждение	Неразреши- мость	Фальсификация
Деонтические:	Обязанность	Разрешение	Безразличие	Запрещение
нормы	О	Р	Б	З

3

Амбивалент-

НОСТЬ

Корректность

Эротетические:

вопросы

Некорректность

NC

Нерелевант-

ность

IR

ОПРЕДЕЛЕНИЕ ПОНЯТИЯ НОРМЫ

Нормы — это социальные запреты и ограничения, накладываемые сообществом (организацией) на отдельного агента.

С одной стороны, нормы есть частный случай оценок: их можно рассматривать как общественно апробированные и закрепленные оценки.

Средством, превращающим оценку в норму, является угроза наказания, т.е. стандартизация норм осуществляется с помощью санкций.

Еще К.Менгер установил прямую связь между предписанием и санкцией: •*p* («обязательно *p*») и «если не *p*, то наказание или ухудшение».

С другой стороны, формирование норм предполагает согласование мнений по этим нормам

РОЛЬ ОБРАЗЦОВ, ОЦЕНОК, НОРМ В ТЕОРИИ АГЕНТОВ

- у агентов прагматические суждения оценочного характера опираются на стандарты, образцы, эталоны и т.п. При этом образец принципиально отличается от примера.
- Пример говорит о том, что имеет место в действительности, а образец о том, что должно быть.
- Примеры используются для поддержки описательных высказываний, а ссылки на образцы служат обоснованием предписаний и требований.
- Легко понять, что в теории агентов центральное место занимает именно формализация предписаний, оценок, норм.
- Реализация агентом нормативного поведения предполагает наличие, по крайней мере, двух элементов:
- нормы, обязательной для выполнения в данной ситуации, и оценки степени выполнения ее предписаний.

ФОРМАЛИЗАЦИЯ ПОНЯТИЯ НОРМЫ

Норму как предписание к действию можно выразить четверкой

$NR = \langle A, act, M_4, W \rangle$

где *A* – множество агентов, которым адресована норма; act∈ACT – действие, являющееся объектом нормативной регуляции (содержание нормы);

W – множество миров, в которых применима норма
 (условия приложения, обстоятельства, в которых должно или не должно выполняться действие);

 $M_4 = \{O, P, 5, 3\}$ — множество базовых модальностей, связанных с действием *act*: здесь O — «обязательно», P — «разрешено», Б — «безразлично» (необязательно),

3 – «запрещено».

КЛАССИЧЕСКОЕ ОПРЕДЕЛЕНИЕ МЕРЫ

Основными характеристиками любого множества являются его границы и мера.

Понятие меры есть одно из важнейших математических понятий, как, впрочем, и понятие интеграла, соответствующего данной мере. Оно является естественным обобщением понятия длины отрезка, площади плоской фигуры, объема пространственной фигуры. Классические меры удовлетворяют условию аддитивности.

Пусть A и B— некоторые события, а X — полное множество событий.

Мерой называется функция множества

$$m: 2^X \rightarrow \mathbb{R}^+, \qquad \mathbb{R}^+=[0,\infty),$$

которая удовлетворяет следующим условиям:

- 1) $\forall A \in 2^X$, $A \subseteq X \Rightarrow m(A) \ge 0$;
- 2) $m(\emptyset) = 0$;
- 3) $\forall A, B \in 2^X$, $m(A \cup B) = m(A) + m(B) m(A \cap B)$.

ВЕРОЯТНОСТНАЯ МЕРА И МЕРА ДИРАКА

Наиболее известным случаем классической меры является *нормальная мера* или *вероятностная мера* А.Н.Колмогорова

$$P: 2^X \to [0,1],$$

которая удовлетворяет следующим условиям:

- 1) $P(\emptyset) = 0$, P(X) = 1 (ограниченность)
- 2) $\forall A,B \in 2^X$, $A \subseteq B \Rightarrow P(A) \le P(B)$ (монотонность)
- 3) $\forall A,B \in 2^X$, $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$ (аддитивность)

В общем случае, берется σ -алгебра множеств, $\sigma \subseteq 2^X$ и аксиома аддитивности записывается в форме $\forall A_i \subseteq \sigma$, $\cap A_i = \varnothing \Rightarrow P (\cup A_i) = \Sigma P(A_i)$.

Академик Андрей Николаевич Колмогоров

(1903-1987)

С вероятностной мерой связана статистика средних значений.

Пусть x_0 есть заданный элемент в X. Частным случаем вероятностной меры является примитивный класс мер Дирака m_D , определяемый соотношением: $\forall A \in 2^X$,

1, если
$$x_0$$
 ∈ A 0 в противном случае.

Мера Дирака есть частный случай вероятностной меры, соответствующий детерминированной сингулярной информации (мера полной уверенности).

КРИТИКА АКСИОМЫ АДДИТИВНОСТИ

Требование аддитивности меры является слишком жестким и ограничительным для многих практических задач информатики, в частности, для процедур экспертного оценивания и формирования мнений.

Существует гипотеза о том, что неаддитивность есть одно из фундаментальных отличий процедур оценивания от процедур измерения.

Тогда в качестве базы для оценивания предлагается пространство с предмерой $\Gamma = (X, \sigma, u)$, где предмера и удовлетворяет лишь условиям ограниченности и монотонности Таким образом, произвольная псевдомера, называемая также неклассической (неаддитивной) мерой, строится как однопараметрическое расширение обычной меры путем замены стандартной аксиомы аддитивности каким-либо более общим условием.

МЕРЫ СУГЕНО

Мерой Сугено называется функция множества $g: 2^X \to [0,1],$

для которой выполняются следующие условия

- 1) $g(\emptyset) = 0$, g(X) = 1 (ограниченность)
- 2) $\forall A,B \in 2^X$, $A \subseteq B \Rightarrow g(A) \leq g(B)$ (монотонность)
- $3^{\circ})$ $\forall A,B \in 2^{X}$, $A \cap B = \varnothing \Rightarrow g(A \cup B) = g(A) + g(B) + \lambda g(A) + g(B)$ (λ -правило) $-1 \le \lambda < \infty$.
- 4) $\forall A_n \in 2^X$, n=1,2,... если $A_1 \subseteq A_2 \subseteq ...$, или $A_1 \supseteq A_2 \supseteq ...$, то $\lim_{n \to \infty} g(A_n) = g (\lim_{n \to \infty} A_n)$ (непрерывность)

В общем случае λ-правило записывается в виде

$$g_{\lambda}(\cup A_{i}) = \sum_{i} g(A_{i}) + \lambda \prod_{i} g(A_{i}), -1 \leq \lambda < \infty.$$

Это правило получается из уравнения $\lambda + 1 = \Pi(1 + \lambda_i)$.

В результате при λ>0 получаем семейство субаддитивных мер:

$$\forall A, B \in 2^X$$
, $g_{\lambda}(A \cup B) < g_{\lambda}(A) + g_{\lambda}(B)$,

а при –1≤λ<0 – семейство супераддитивных (синергетических) мер

$$\forall A, B \in 2^X$$
, $g_{\lambda}(A \cup B) > g_{\lambda}(A) + g_{\lambda}(B)$.

При λ=0 мера Сугено превращается в обычную аддитивную (вероятностную) меру.

ОСНОВЫ ТЕОРИИ СВИДЕТЕЛЬСТВ: МЕРЫ ДОВЕРИЯ И ПРАВДОПОДОБИЯ

Одними из первых ученых, предложивших применять неклассические меры (псевдомеры) в интересах описания экспертных суждений (свидетельств), стали А.Демпстер и Дж. Шейфер.

Так Демпстер ввел функции верхних и нижних вероятностей, индуцируемых многозначными отображениями.

В свою очередь, Шейфер построил теорию свидетельств на основе двух классов монотонных неаддитивных мер – мер доверия и мер правдоподобия.

Мерой доверия называется монотонная функция множества $b: 2^X \to [0,1],$

удовлетворяющая следующим условиям:

- (a) $b(\varnothing) = 0$, b(X) = 1
- (б) $\forall A,B \in 2^{X}$, $b(A \cup B) \ge b(A) + b(B)$.

Здесь условие (б) определяет свойство супераддитивности.

Пусть А' есть дополнение А. Из определения меры доверия вытекает ее важное свойство *b* (*A*)+*b* (*A*') ≤1 (субкомплементарность).

ОСНОВЫ ТЕОРИИ СВИДЕТЕЛЬСТВ: МЕРЫ ДОВЕРИЯ И ПРАВДОПОДОБИЯ (продолжение)

Если задана мера доверия, то двойственную к ней меру правдоподобия можно определить следующим образом

$$PI(A) = 1 - b(A), \forall A \in 2^X$$

Монотонная мера правдоподобия PI удовлетворяет следующим аксиомам:

(a)
$$PI(\emptyset) = 0$$
, $PI(X) = 1$

(6')
$$\forall A,B \in 2^X$$
, PI (A ∪ B) ≤ PI (A) + PI (B).

Аксиома (б') определяет условие субаддитивности.

Для меры *PI* выполняется также условие *суперкомплементарности*

Пусть \wp - множество высказываний. Введем функцию m_{\wp} : $\wp \to [0,1]$, причем:

1)
$$m_{p}(\varnothing) = 0; 2) \sum_{p \in \mathscr{D}_{:}} m_{p}(p) = 1.$$

Тогда для любых высказываний р, q ∈ № по Шейферу получаем

$$v(q) = b(q) = \sum m_p(p).$$

Аналогично имеем

$$PI(q) = \sum_{p} m_{p}(p)$$
 р не влечет за собой |q

Легко определить также меру недоверия *nb* (A) = 1 – *b* (A) и меру отвержения (неправдоподобности) *nPl* (A) = 1– *pl* (A).

МЕРЫ ВОЗМОЖНОСТИ И НЕОБХОДИМОСТИ

Из аксиомы монотонности для любой предмеры непосредственно вытекают два важных неравенства, характеризующие два фундаментальных класса псевдомер

- $g(A \cup B) \ge \max\{g(A), g(B)\}$
- $g(A \cap B) \leq \min \{g(A), g(B)\}.$

Тогда в граничных случаях определяются мера возможности П Л.Заде как минимальная мера правдоподобия и мера необходимости N Дюбуа-Прада как максимальная мера доверия.

Мера возможности есть функция множества

$$\Pi: 2^X \to [0,1],$$

для которой справедливы условия:

- 1. *П* (∅) = 0, *П* (*X*) =1 (ограниченность)
- 2. $\forall A, B \in 2X, A \subseteq B \Rightarrow \Pi(A) \leq \Pi(B)$ (монотонность)
- 3. $\forall A,B$ ∈ 2X, Π ($A \cup B$) = max { Π (A), Π (B)} («либо-либо»-условие)

Меру *П* можно задать на множестве высказываний ℘. Пусть р,q∈℘.

Тогда условие $\Pi(p \lor q) = \max\{\Pi(p),\Pi(q)\}$ можно интерпретировать следующим образом: истинность дизъюнкции двух суждений определяется возможностью появления хотя бы одного из них.

В свою очередь, нечеткое множество может пониматься как функция (плотность) распределения возможности

$$\pi: X \rightarrow [0,1]$$

удовлетворяющая условию нормировки $\Pi(A) = \sup_{x \in A} \pi(x) = 1$.

МЕРЫ ВОЗМОЖНОСТИ И НЕОБХОДИМОСТИ

(продолжение)

Мера необходимости есть функция множества

$$N: 2^X \to [0,1],$$

для которой выполняются требования:

1.
$$N(\emptyset) = 0$$
, $N(X) = 1$ (ограниченность)

2.
$$\forall A, B \in 2X, A \subseteq B \Rightarrow N(A) \leq N(B)$$
 (монотонность)

$$3^*$$
. $\forall A, B \in 2X$, $N(A \cap B) = \min \{N(A), N(B)\}$ («и-и» условие).

Если определить меру N на множестве высказываний \wp , то условие $N(p \land q) = \min \{N(p), N(q)\}$ означает, что истинность конъюнкции двух суждений определяется необходимостью их одновременного выполнения.

Для мер необходимости и возможности справедливо равенство

$$N(A) = 1 - \Pi(A'), \forall A \in 2X$$

Это условие можно записать и в более общей форме

$$N(A) = n(\Pi(A')),$$

где *n* – некоторая функция отрицания.

Меру необходимости также можно определить по функции распределения возможности

$$N(A) = \inf_{x \in A} (1 - \pi(x))$$

МЕРЫ ВОЗМОЖНОСТИ И НЕОБХОДИМОСТИ В НЕТРАДИЦИОННЫХ СЕМАНТИКАХ

Модализация истинностных значений (в стиле H.Решера) на основе квазимер (неаддитивных мер) - мер возможности Заде П и мер необходимости Дюбуа-Прада N, приводящая к нарушению принципа дополнительности, связана с формированием

ВОЗМОЖНОСТНЫХ СЕМАНТИК $2 \ge T(p) + F(p) \ge 1$ И НЕОБХОДИМОСТНЫХ СЕМАНТИК $T(p) + F(p) \le 1$.

СООТНОШЕНИЯ МЕЖДУ ВЕРОЯТНОСТЬЮ, ВОЗМОЖНОСТЬЮ И НЕОБХОДИМОСТЬЮ

Основное соотношение между возможностью и необходимостью записывается в виде:

$$\Pi(A) \ge P(A) \ge N(A)$$

В отличие от выполняемого для вероятностной меры закона P(A)+P(A')=1, $\forall A\in 2^X$, для меры возможности имеем условие

$$\Pi(A) + \Pi(A') \ge 1, \forall A \in 2^X$$

а для меры необходимости выпоняется

$$N(A) + N(A') \le 1, \forall A \in 2^X$$

Кроме того, из Π (A) < 1 следует N (A) = 0 (неполная возможность события A приводит к абсолютной неуверенности), а из N(A)>0 вытекает Π (A)=1 (наличие некоторой уверенности в A означает его абсолютную возможность). В свою очередь, такие понятия как невозможность $n\Pi$ и проблематичность (ненеобходимость, случайность) nN легко описать с помощью обычного оператора отрицания на основе мер возможности и необходимости соответственно:

$$n\Pi(A) = 1 - \Pi(A), \forall A \in 2^X$$

 $nN(A) = 1 - N(A), \forall A \in 2^X$

КАЧЕСТВЕННЫЕ ОЦЕНКИ возможности и нечеткости

Идея построения сравнительных оценок возможности восходит к работам Д.Льюиса, который интерпретировал возможность как отношение сходства. Затем Дюбуа и Прад показали, что мера возможности индуцирует отношение \ge_{Π} между событиями: $A \ge_{\Pi} B$ тогда и только тогда, когда Π (A) ≥ Π (B). Здесь $A \ge_{\Pi} B$ означает, что возможность события A, по крайней мере, не меньше возможности события В.

Отношение ≥ обладает следующими свойствами:

- a) T ≥_п F, где T и F истина и ложь соответственно;

- б) $A \ge_{\Pi}^{\Pi} B$ или $A \le_{\Pi} B$ (сравнимость); в) $A \ge_{\Pi} B$, $B \ge_{\Pi} C \Rightarrow A \ge_{\Pi} C$ (транзитивность); г) если $B \ge_{\Pi} C$, то для любого A имеем $A \cup B \ge_{\Pi} A \cup C$.

В свою очередь, Трильяс и Альсина обобщили идею сравнительных оценок для произвольных неклассических мер, введя (рефлексивное и транзитивное) отношение предпорядка ≥_g. Здесь А ≥_g В означает, что множество А обладает неким свойством в степени, не меньшей, чем множество В.

Отношение предпорядка по включению множеств позволяет с единых позиций описать не только расширения классических мер, определенные на 2^X , но и функции нечетких множеств, заданные на $[0,1]^X$.

МЕРЫ НА НЕЧЕТКИХ МНОЖЕСТВАХ

Различные меры на нечетких множеств можно определить, вводя разные отношения порядка (или предпорядка) на интервале [0,1]. Здесь классическое отношение порядка (порядок вложенности нечетких множеств) задается в виде:

$$\mu \le v \Leftrightarrow \mu(x) \le v(x), \ \forall x \in X.$$

Рассмотрим максимально нечеткое множество с функцией принадлежности μ(x) = 0.5. Тогда новое отношение порядка ≤ ′, называемое «порядком заострения», можно задать следующим образом:

$$\mu \leq ' \vee \Leftrightarrow \mu(x) \leq ' \vee (x), \ \forall x \in X,$$

где $\mu(x) \le v(x)$ тогда и только тогда, когда $\mu(x) \le v(x)$ при $\mu(x) \le 0.5$ и $\mu(x) \ge v(x)$ при $\mu(x) \ge 0.5$.

Отношениям порядка ≤ и ≤" ставятся в соответствие два класса мер – меры энергии и меры энтропии нечетких множеств соответственно.

Пусть высказывание $p \in \mathbb{P}$. Как известно, противоречие в классической логике записывается в форме $p \land p$. В обобщенном виде его можно выразить формулой p T n(p), где T-треугольная норма, отвечающая лингвистической связке «I», а I — унарная операция отрицания в функционально-аксиоматической форме.

Введем отношение предпорядка, индицируемое отрицанием *n*, т.е. рефлексивное и транзитивное отношение ≤_n на [0,1]

$$p \le_n q \Leftrightarrow p T n(p) \le q T n(q)$$

и будем рассматривать предупорядоченное множество $[0,1]_n$.

Для наибольшей треугольной нормы $T = \min \text{ имеем p≤}_n q \Leftrightarrow \min \{p, n(p)\} \le \min \{q, n(q)\}$.

МЕРЫ ЭНЕРГИИ НЕЧЕТКИХ МНОЖЕСТВ (ПОКАЗАТЕЛИ СИЛЫ ПРИНАДЛЕЖНОСТИ

Пусть X – базовое множество, на котором определено нечеткое множество μ : $X \rightarrow [0,1]$, а $[0,1]^X = \{\mu \mid \mu : X \rightarrow [0,1]\}$ – множество всех нечетких подмножеств.

Обозначим через R⁺ множество всех неотрицательных действительных чисел R⁺.

Мерой энергии нечеткого множества называется функция $e: [0,1]^X \rightarrow \mathbb{R}^+,$

удовлетворяющая следующим аксиомам:

- e1) $e(\mu)$ =0 тогда и только тогда, когда $\mu(x)$ =0 для всех x из X;
- e2) $e(\mu)$ принимает максимальное значение тогда и только тогда, когда $\mu(x)$ =1 для всех x из X;
- e3) $\forall \mu, \nu \in [0,1]X, \mu(x) \leq \nu(x) \Rightarrow e(\mu) \leq e(\nu)$.

Примеры. 1. Мощность нечеткого множества μ $P(\mu) = \sum_{i} \mu(x_i)$

2. Информационная энергия нечеткого множества μ IE(μ) = Σ W_i μ (x_i)

МЕРЫ ЭНТРОПИИ НЕЧЕТКИХ МНОЖЕСТВ

Пусть X – базовое множество, на котором определено нечеткое множество μ : $X \rightarrow [0,1]$, а $[0,1]X = \{\mu \mid \mu : X \rightarrow [0,1]\}$ – множество нечетких подмножеств.

Мера энтропии определяется в виде функции

$$h: [0,1]^{X} \rightarrow R^{+},$$

удовлетворяющей следующим условиям:

h1) $h(\mu) = 0$ тогда и только тогда, когда $\mu(x) = f(x) \in \{0,1\}$, т.е. когда f-классическая характеристическая функция множества;

h2) $h(\mu) = h_{\text{max}}$ тогда и только тогда, когда $\mu(x) = 0.5$ для всех $x \in X$;

h3) $\forall \mu, \nu \in [0,1]X, \mu(x) \leq \nu(x) \Rightarrow h(\mu) \leq h(\nu)$.

Примеры. 1. $h_0(\mu) = \sum_i \mu(x_i) (1 - \mu(x_i))$. 2. $h_{SH}(\mu) = \sum_i [\mu(x_i) \ln \mu(x_i) + (1 - \mu(x_i)) \ln (1 - \mu(x_i))]$

Известны и другие определения энтропии, в частности,

- А) Энтропии по А.Кофману, как нормализованного расстояния до предельно нечеткого распределения $\mu(x)=0.5, \ \forall x \in X;$
- В) Энтропии как расстояния между нечетким множеством и его дополнением. Согласно И.З.Батыршину, мера энтропии на алгебре может пониматься как мера ее небулевости.
- В общем случае энтропию можно определить через отношение предпорядка ≤ как функцию

где T и S — треугольная норма и конорма соответственно, n — операция отрицания, а k — константа (коэффициент нормализации).

МЕРЫ СПЕЦИФИЧНОСТИ НЕЧЕТКИХ МНОЖЕСТВ

Меры специфичности (неспецифичности) нечетких множеств тесно связаны с понятием гранулярности и показывают степень точности задания нечеткого множества Пусть X — базовое множество, а $[0,1]^X = \{\mu \mid \mu \colon X \to [0,1]\}$ — множество всех нечетких подмножеств, определенных на X. Мера специфичности по Р.Ягеру [15] есть нормализованная функция нечеткого множества .

 $sp: [0,1]^X \rightarrow [0,1],$

такая что

sp1) $sp(\mu)$ = 1 тогда и только тогда, когда μ есть одноточечное множество, μ ={xi};

 $sp2) sp(\mu) = 0, если <math>\mu$ – пустое множество;

sp3) $\forall \mu, \nu \in [0,1]^X$, $\mu(x) \le \nu(x) \Rightarrow sp(\mu) \le sp(\nu)$.

ФОРМИРОВАНИЕ СЕМЕЙСТВ ОПЕРАЦИЙ НАД НЕЧЕТКИМИ МНОЖЕСТВАМИ

ПРЕДСТАВЛЕНИЕ ЛОГИКО-ЛИНГВИСТИЧЕСКИХ СВЯЗОК: ФУНКЦИОНАЛЬНО-АКСИОМАТИЧЕСКИЙ ПОДХОД

В современной теории нечетких множеств логико-лингвистические связки «И» и «ИЛИ» определяются в виде треугольных норм и конорм, т.е. двухместных действительных функций, задаваемых на интервале [0,1].

Треугольные нормы и конормы были введены в 1951 г. К.Менгером (Menger,1951] в области стохастической геометрии, а именно с целью расширения неравенства треугольника в определении метрического пространства на случай вероятностных метрических пространств.

Они были подробно изучены Б.Швейцером и А.Скларом (см. [Schweizer and Sklar,1960,1963 и1983]).

ТРЕУГОЛЬНЫЕ НОРМЫ И КОНОРМЫ В ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ

В теорию нечетких множеств **треугольные нормы** и **конормы** ввели **К.Альсина**, **Э.Трильяс и Л.Вальверде** (см. [Alsina et al., 1980 и 1983; Трильяс и др., 1986] в интересах развития концепции **плюрализма операций** над нечеткими множествами и построения единого функционально-аксиоматического подхода к определению операций пересечения и объединения нечетких множеств.

Треугольные нормы и конормы были подробно исследованы и использованы с целью упорядочения по силе различных видов пересечения и объединения нечетких множеств, а также в рамках построения новых обобщенных параметризованных нечетких операторов (семейства операторов Гамахера, Сугено, Ягера, Домби, Франка и др.). Появились меры неопределенности на базе треугольных норм и конорм, меры противоречивости и пр.

См. работы [Dubois and Prade, 1980 и 1982; Klement, 1982; Weber, 1983; Yager, 1980]. Понятие треугольных полунорм и полуконорм предложили Suarez Garcia и Gil Alvarez [Suarez Garcia и Gil Alvarez, 1986].

Обобщение исходных понятий треугольных норм и конорм на случай ограниченных упорядоченных множеств предложено в работе [De Cooman and Kerre, 1994].

ТРЕУГОЛЬНЫЕ ПОЛУНОРМЫ И ПОЛУКОНОРМЫ

Пусть *L* – решетка с наименьшим элементом *0* и наибольшим элементом *1*.

Бинарная операция

 $T: L \times L \rightarrow L$

 $S: L \times L \rightarrow L$

называется

треугольной полунормой, треугольной полуконормой,

если удовлетворяются следующие условия:

- ограниченность $T(0, 0) = 0, T(x, 1) = T(1, x) = x, \qquad 1') S(1, 1) = 1, S(x, 0) = S(0, x) = x,$ $\forall x \in L;$
- 2) $x \le u$, $y \le v \Rightarrow T(x,y) \le T(u,v)$, 2') $x \le u$, $y \le v \Rightarrow S(x,y) \le S(u,v)$, $\forall x, y, u, v \in L$.

ТРЕУГОЛЬНЫЕ НОРМЫ И КОНОРМЫ

Бинарная операция

$$T: [0,1] \times [0,1] \rightarrow [0,1]$$

S:
$$[0,1] \times [0,1] \rightarrow [0,1]$$

называется

треугольной нормой, треугольной конормой,

если удовлетворяются следующие условия:

- 🔲 ограниченность
- 1) T(0, 0) = 0, T(x, 1) = T(1, x) = x, 1') S(1, 1) = 1, S(x, 0) = S(0, x) = x, $\forall x \in [0,1]$;
- **—** монотонность
- 2) $x \le u, y \le v \Rightarrow T(x,y) \le T(u,v),$ 2') $x \le u, y \le v \Rightarrow S(x,y) \le S(u,v),$ $\forall x, y, u, v \in [0,1];$

3)
$$T(x, y) = T(y, x),$$

3')
$$S(x, y) = S(y, x),$$

 $\forall x, y \in [0,1];$

— ассоциативность

4)
$$T(T(x, y), z) = T(x, T(y, z)),$$
 4') $S(S(x, y), z) = S(x, S(y, z)),$ $\forall x, y, z \in [0,1]$

ПРИМЕРЫ ТРЕУГОЛЬНЫХ НОРМ И КОНОРМ

Треугольные нормы *Т*

Треугольные конормы *S*

Каноническая (максимальная) треугольная норма

 $T_0(x,y) = \min\{x,y\}, \ \forall x,y \in L$

Вероятностная треугольная норма

 $T_{\rm pr}(x,y) = x y$, $\{y, y \in L\}$

Треугольная норма Лукасевича (ограниченное произведение)

 $T_b(x,y) = \max\{0, x+y-1\}, \forall x,y \in L$

Каноническая (минимальная) треугольная конорма

 $S_0(x,y) = \max\{x,y\}, \forall x,y \in L$

Вероятностная треугольная конорма

 $S_{pr}(x,y) = x + y - x y, \}, \forall x,y \in L$

Треугольная конорма Лукасевича (ограниченная сумма)

 $\overline{S_{b}(x,y)} = \min\{1, x+y\}, \forall x,y \in L$

ПАРАМЕТРИЗОВАННЫЕ ТРЕУГОЛЬНЫЕ НОРМЫ И ОТРИЦАНИЯ

Примеры. 1. Семейство треугольных норм Гамахера $T_H(x,y) = x \ y \ / \ [\gamma + (1-\gamma)(x+y-xy)], \qquad 0 \le \gamma < \infty$ При $\gamma=1$ имеем $T_p(x,y)$.

2. Семейство треугольных норм Сугено T_s $T_s(x,y) = \max [0, x + y - 1 - \lambda(1-x) (1-y)], -1 \le \lambda < \infty$ При $\lambda = 0$ имеем $T_b(x,y)$.

3. Семейство треугольных норм Ягера
$$T_{\gamma}$$
 $T_{\gamma}(x,y)=1-\min{[1,(1-x)^q+(1-y)^q]^{1/q}}, \qquad 0 \le q < \infty$
При $q \to \infty$ имеем $T_{\gamma}(x,y)$

УНИНОРМЫ

Унинормы в интервале [0,1] были предложены Р.Ягером и В.Рыбаловым [Yager and Rybalov, 1996] и исследованы в работах Я.Фодора,С.-К.Ху и З.-Ф.Ли, М.Маэс. Структура унинорм подробно описана в [Fodor et al., 1997; Yager, 2001]. В общем случае нейтральный элемент е может отличаться от нуля или единицы. При е = 0 унинорма превращается в t-норму, а при е = 1 она становится t-конормой.

Унинормы ведут себя **поочередно** как **операции конъюнкции** и **дизъюнкции** в различных зонах области $[0, 1]^2$. Для n—арной операции берется область $[0, 1]^n$ или даже произвольный **гиперкуб** $[a,b]^n$. Тогда многие операции, применяемые в экспертных системах, оказываются унинормами (в частности, операции, использованные в системах MYCIN и PROSPECTOR, являются унинормами, например $x^\oplus y = xy / [xy + (1-x)(1-y)]$. Важный класс унинорм, называемый представимыми унинормами, обладает аддитивными генераторами: $g: [0,1] \to [-\infty, +\infty], g(e) = 0, g(0) = -\infty, g(1) = +\infty$. При этом унинорма определяется выражением $f(x, y) = g^{-1}(g(x) + g(y))$

УНИНОРМЫ

Обобщения t-норм и t-конорм – унинормы *U*.

Пусть L – решетка с наименьшим элементом 0 и наибольшим элементом 1.

Бинарная операция

$$U: L \times L \rightarrow L$$

называется унинормой, если выполняются следующие условия:

- наличие нейтрального элемента
 e ∈ L, такого, что U (x, e) = U (e, x) = x, ∀ x ∈ L;
- МОНОТОНОСТЬ $x \le u, y \le v \Rightarrow U(x,y) \le U(u,v), \forall x, y, u, v \in L;$
- \square коммутативность $U(x, y) = U(y, x), \forall x, y \in L;$
- □ ассоциативность
 U (U (x, y), z) = U (x, U (y, z)), ∀x, y, z ∈ L.