
Shortest Paths

1. Dijkstra’s algorithm.

2. The Bellman-Ford algorithm.

3. The Floyd-Warshall algorithm.
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The Bellman-Ford algorithm

the fixed order: (t; x); (t; y); (t; z); (x; t); (y; x); (y; z); (z; 
x); (z; s); (s; t); (s; y)
Part (a) shows the situation just before the first pass.



The Bellman-Ford algorithm

Parts (b) through (e) show the situation after each 
successive pass.



The Bellman-Ford algorithm

The shortest and pred values in part (e) are the 
final values.



The Bellman-Ford algorithm

Consider a shortest path from the source s to any 
vertex v.
If we relax the edges, in order, along a shortest 
path from s to v, then shortest [v] and pred[v] are 
correct.
If there are not negative-weight cycles on the 
graph, then there is always a shortest path from s 
to v that does not contain a cycle.



The Bellman-Ford algorithm

Every acyclic path must contain at most n - 1 
edges. If a path contains n edges then it must visit 
some vertex twice, which would make a cycle.

The first time that step 2A relaxes all edges, it must 
relax the first edge on this shortest path. The 
second time that step 2A relaxes all edges, it must 
relax the second edge on the shortest path, and so 
on. After the (n – 1) time, all edges on the shortest 
path have been relaxed, in order, and therefore 
shortest [v] and pred [v] are correct.



The Bellman-Ford algorithm

The graph contains a negative-weight cycle and we 
have already run the BELLMAN-FORD procedure on 
it.
=>around and around a negative-weight cycle 
=>getting a lower-weight path each time around

That means that there is at least one edge (u; v) on 
the cycle for which shortest[v] will decrease if you 
relax it again.



The Bellman-Ford algorithm

How to find a negative-weight cycle, if one exists, 
after running BELLMAN-FORD?

Go through the edges once again. 
If we find an edge (u; v) for which 
shortest [u]+weight(u; v) < shortest[v], then 
• vertex v is either on a negative-weight cycle or 
• is reachable from one.





The Bellman-Ford algorithm

The loop of step 2 iterates n - 1 times. 
The loop of step 2A iterates m times, once per 
edge. 🡺 The total running time is Θ(nm).



The Bellman-Ford algorithm

To find whether a negative-weight cycle exists 
taking O(m) time. 
If there is a negative-weight cycle, it can contain at 
most n edges, and so the time to trace it out is 
O(n).



The Bellman-Ford algorithm

Negative-weight cycles 
relate to arbitrage 
opportunities in 
currency trading.
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To find an arbitrage opportunity, if one exists, 
• construct a directed graph with one vertex v

i
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• Add a new vertex s with a 0-weight edge (s; v
i
) to 

each of the vertices v
1
 through v

n
. 

• Run the Bellman-Ford algorithm on this graph with 
s as the source vertex, and 

• use the result to determine whether it contains a 
negative-weight cycle. 

If it does, then the vertices on that cycle correspond 
to the currencies in an arbitrage opportunity.



The Floyd-Warshall algorithm 

The classic example of all-pairs shortest paths is the 
table of a road atlas giving distances between several 
cities. 
You find the row for one city, you find the column for 
the other city, and the distance between them lies at 
the intersection of the row and column.



The Floyd-Warshall algorithm 

There is one problem with this example: it’s not 
all-pairs. 
If it were all pairs, the table would have one row and 
one column for every intersection, not for just every 
city. 
The number of rows and columns for just the one 
country would be in the millions.



The Floyd-Warshall algorithm 

What would be a rightful application of all-pairs 
shortest paths? 
Finding the diameter of a network: the longest of all 
shortest paths. 
For example, suppose that a directed graph 
represents a communication network, and the weight 
of an edge gives the time it takes for a message to 
traverse a communication link. 
Then the diameter gives you the longest possible 
transit time for a message in the network.



The Floyd-Warshall algorithm 

Using the Floyd-Warshall algorithm, we can solve the 
all-pairs problem in Θ(n3) time. 
For the Floyd-Warshall algorithm the graph can have 
negative-weight edges but no negative-weight cycles.
The Floyd-Warshall algorithm illustrates a clever 
algorithmic technique called “dynamic programming”.



The Floyd-Warshall algorithm 

The Floyd-Warshall algorithm relies on one property 
of shortest paths.
If a shortest path, call it p, from vertex u to vertex v 
goes from vertex u to vertex x to vertex y to vertex v, 
then the portion of p that is between x and y is itself 
a shortest path from x to y. 
That is, any subpath of a shortest path is itself a 
shortest path.



The Floyd-Warshall algorithm 

the vertices are numbered from 1 to n
Vertex numbers become important.

shortest[u; v; x] is the weight of a shortest path from 
vertex u to vertex v in which each intermediate vertex 
– a vertex on the path other than u and v – is 
numbered from 1 to x

(u, v, and x as integers in the range 1 to n that 
represent vertices)



The Floyd-Warshall algorithm 

Let’s consider two vertices u and v. 

Pick a number x in the range from 1 to n.

Consider all paths from u to v in which all 
intermediate vertices are numbered at most x. 
Of all these paths, let path p be one with minimum 
weight. 
Path p either contains vertex x or it does not. 



The Floyd-Warshall algorithm 

There are two possibilities:
First possibility: x is not an intermediate vertex in 
path p. Then all intermediate vertices of path p are 
numbered at most x - 1. What does this mean? 
Shortest[u; v; x] equals shortest[u; v; x – 1].
Second possibility: x appears as an intermediate 
vertex in path p. Then 
shortest[u; v; x] equals shortest[u; x; x – 1] +
+ shortest[x; v; x – 1].



The Floyd-Warshall algorithm 

adjacency-matrix representation

The entry for edge (u; v) holds the weight of the edge, 
with a weight of ∞ indicating that the edge is absent.
Shortest[u; v; 0] denotes the weight of a shortest path 
from u to v with all intermediate vertices numbered at 
most 0, such a path has no intermediate vertices.
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computes shortest[u; v; x] values => x=1
computes shortest[u; v; x] values => x=2
computes shortest[u; v; x] values => x=2
…
computes shortest[u; v; x] values => x=n

pred[u; v; x] as the predecessor of vertex v on a 
shortest path from vertex u in which all intermediate 
vertices are numbered at most x





The Floyd-Warshall algorithm 

• example

shortest[2; 4; 0] is 1, because we 
can get from vertex 2 to vertex 4 
directly, with no intermediate 
vertices, by taking edge (2; 4) 
with weight 1
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• pred[u; v; 0] values
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• After running the loop for x=1
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• After running the loop for x=2

• After running the loop for x=3
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• shortest[u; v; 4] and pred[u; v; 4] values



The Floyd-Warshall algorithm 
dynamic programming
This technique applies only when:
1. we are trying to find an optimal solution to a 
problem,
2. we can break an instance of the problem into 
instances of one or more subproblems,
3. we use solutions to the subproblem(s) to solve the 
original problem, and
4. if we use a solution to a subproblem within an 
optimal solution to the original problem, then the 
subproblem solution we use must be optimal for the 
subproblem.


