
Shortest Paths

1. Dijkstra’s algorithm.

2. The Bellman-Ford algorithm.

3. The Floyd-Warshall algorithm.

The Bellman-Ford algorithm

1958 1962

The Bellman-Ford algorithm

The Bellman-Ford algorithm

the fixed order: (t; x); (t; y); (t; z); (x; t); (y; x); (y; z); (z;
x); (z; s); (s; t); (s; y)
Part (a) shows the situation just before the first pass.

The Bellman-Ford algorithm

Parts (b) through (e) show the situation after each
successive pass.

The Bellman-Ford algorithm

The shortest and pred values in part (e) are the
final values.

The Bellman-Ford algorithm

Consider a shortest path from the source s to any
vertex v.
If we relax the edges, in order, along a shortest
path from s to v, then shortest [v] and pred[v] are
correct.
If there are not negative-weight cycles on the
graph, then there is always a shortest path from s
to v that does not contain a cycle.

The Bellman-Ford algorithm

Every acyclic path must contain at most n - 1
edges. If a path contains n edges then it must visit
some vertex twice, which would make a cycle.

The first time that step 2A relaxes all edges, it must
relax the first edge on this shortest path. The
second time that step 2A relaxes all edges, it must
relax the second edge on the shortest path, and so
on. After the (n – 1) time, all edges on the shortest
path have been relaxed, in order, and therefore
shortest [v] and pred [v] are correct.

The Bellman-Ford algorithm

The graph contains a negative-weight cycle and we
have already run the BELLMAN-FORD procedure on
it.
=>around and around a negative-weight cycle
=>getting a lower-weight path each time around

That means that there is at least one edge (u; v) on
the cycle for which shortest[v] will decrease if you
relax it again.

The Bellman-Ford algorithm

How to find a negative-weight cycle, if one exists,
after running BELLMAN-FORD?

Go through the edges once again.
If we find an edge (u; v) for which
shortest [u]+weight(u; v) < shortest[v], then
• vertex v is either on a negative-weight cycle or
• is reachable from one.

The Bellman-Ford algorithm

The loop of step 2 iterates n - 1 times.
The loop of step 2A iterates m times, once per
edge. 🡺 The total running time is Θ(nm).

The Bellman-Ford algorithm

To find whether a negative-weight cycle exists
taking O(m) time.
If there is a negative-weight cycle, it can contain at
most n edges, and so the time to trace it out is
O(n).

The Bellman-Ford algorithm

Negative-weight cycles
relate to arbitrage
opportunities in
currency trading.

The Bellman-Ford algorithm

n currencies c
1
; c

2
; c

3
; … ; c

n
,

all the exchange rates between pairs of currencies

with 1 unit of currency c
i
 we can buy r

ij
 units of

currency c
j
.

r
ij
 is the exchange rate between currencies c

i
 and

c
j
.

both i and j range from 1 to n

!!!r
ii
 = 1 for each currency c

i

The Bellman-Ford algorithm

The Bellman-Ford algorithm

The Bellman-Ford algorithm

To find an arbitrage opportunity, if one exists,
• construct a directed graph with one vertex v

i
 for

each currency c
i
.

• For each pair of currencies c
i
 and c

j
, create directed

edges (v
i
; v

j
) and (v

j
; v

i
) with

 weights -lg r
ij
 and -lg r

ji
, respectively.

The Bellman-Ford algorithm

• Add a new vertex s with a 0-weight edge (s; v
i
) to

each of the vertices v
1
 through v

n
.

• Run the Bellman-Ford algorithm on this graph with
s as the source vertex, and

• use the result to determine whether it contains a
negative-weight cycle.

If it does, then the vertices on that cycle correspond
to the currencies in an arbitrage opportunity.

The Floyd-Warshall algorithm

The classic example of all-pairs shortest paths is the
table of a road atlas giving distances between several
cities.
You find the row for one city, you find the column for
the other city, and the distance between them lies at
the intersection of the row and column.

The Floyd-Warshall algorithm

There is one problem with this example: it’s not
all-pairs.
If it were all pairs, the table would have one row and
one column for every intersection, not for just every
city.
The number of rows and columns for just the one
country would be in the millions.

The Floyd-Warshall algorithm

What would be a rightful application of all-pairs
shortest paths?
Finding the diameter of a network: the longest of all
shortest paths.
For example, suppose that a directed graph
represents a communication network, and the weight
of an edge gives the time it takes for a message to
traverse a communication link.
Then the diameter gives you the longest possible
transit time for a message in the network.

The Floyd-Warshall algorithm

Using the Floyd-Warshall algorithm, we can solve the
all-pairs problem in Θ(n3) time.
For the Floyd-Warshall algorithm the graph can have
negative-weight edges but no negative-weight cycles.
The Floyd-Warshall algorithm illustrates a clever
algorithmic technique called “dynamic programming”.

The Floyd-Warshall algorithm

The Floyd-Warshall algorithm relies on one property
of shortest paths.
If a shortest path, call it p, from vertex u to vertex v
goes from vertex u to vertex x to vertex y to vertex v,
then the portion of p that is between x and y is itself
a shortest path from x to y.
That is, any subpath of a shortest path is itself a
shortest path.

The Floyd-Warshall algorithm

the vertices are numbered from 1 to n
Vertex numbers become important.

shortest[u; v; x] is the weight of a shortest path from
vertex u to vertex v in which each intermediate vertex
– a vertex on the path other than u and v – is
numbered from 1 to x

(u, v, and x as integers in the range 1 to n that
represent vertices)

The Floyd-Warshall algorithm

Let’s consider two vertices u and v.

Pick a number x in the range from 1 to n.

Consider all paths from u to v in which all
intermediate vertices are numbered at most x.
Of all these paths, let path p be one with minimum
weight.
Path p either contains vertex x or it does not.

The Floyd-Warshall algorithm

There are two possibilities:
First possibility: x is not an intermediate vertex in
path p. Then all intermediate vertices of path p are
numbered at most x - 1. What does this mean?
Shortest[u; v; x] equals shortest[u; v; x – 1].
Second possibility: x appears as an intermediate
vertex in path p. Then
shortest[u; v; x] equals shortest[u; x; x – 1] +
+ shortest[x; v; x – 1].

The Floyd-Warshall algorithm

adjacency-matrix representation

The entry for edge (u; v) holds the weight of the edge,
with a weight of ∞ indicating that the edge is absent.
Shortest[u; v; 0] denotes the weight of a shortest path
from u to v with all intermediate vertices numbered at
most 0, such a path has no intermediate vertices.

The Floyd-Warshall algorithm

computes shortest[u; v; x] values => x=1
computes shortest[u; v; x] values => x=2
computes shortest[u; v; x] values => x=2
…
computes shortest[u; v; x] values => x=n

pred[u; v; x] as the predecessor of vertex v on a
shortest path from vertex u in which all intermediate
vertices are numbered at most x

The Floyd-Warshall algorithm

• example

shortest[2; 4; 0] is 1, because we
can get from vertex 2 to vertex 4
directly, with no intermediate
vertices, by taking edge (2; 4)
with weight 1

The Floyd-Warshall algorithm

• pred[u; v; 0] values

The Floyd-Warshall algorithm

• After running the loop for x=1

The Floyd-Warshall algorithm

• After running the loop for x=2

• After running the loop for x=3

The Floyd-Warshall algorithm

• shortest[u; v; 4] and pred[u; v; 4] values

The Floyd-Warshall algorithm
dynamic programming
This technique applies only when:
1. we are trying to find an optimal solution to a
problem,
2. we can break an instance of the problem into
instances of one or more subproblems,
3. we use solutions to the subproblem(s) to solve the
original problem, and
4. if we use a solution to a subproblem within an
optimal solution to the original problem, then the
subproblem solution we use must be optimal for the
subproblem.

