$HOUS = \beta_1 + \beta_2 DPI + \beta_3 PRELHOUS + u$

In this sequence we will make an initial exploration of the determinants of aggregate consumer expenditure on housing services using the Demand Functions data set.

$HOUS = \beta_1 + \beta_2 DPI + \beta_3 PRELHOUS + u$

HOUS is aggregate consumer expenditure on housing services and *DPI* is aggregate disposable personal income. Both are measured in \$ billion at 2000 constant prices.

$HOUS = \beta_1 + \beta_2 DPI + \beta_3 PRELHOUS + u$

$$PRELHOUS = 100 \times \frac{PHOUS}{PTPE}$$

PRELHOUS is a relative price index for housing services constructed by dividing the nominal price index for housing services by the price index for total personal expenditure.

Here is a plot of *PRELHOUS* for the sample period, 1959–2003.

Dependent Variable Method: Least Squar Sample: 1959 2003 Included observatio	: HOUS res ons: 45			
Variable	Coefficient	Std. Error		======== c Prob.
C	334.6657	37.26625	8.980396	0.0000
DPI	0.150925	0.001665	90.65785	0.0000
PRELHOUS	-3.834387	0.460490	-8.326764	0.0000
R-squared	0.996722	Mean depe	endent var	630.2830
Adjusted R-squared	0.996566	S.D. depe	endent var	249.2620
S.E. of regression	14.60740	Akaike in	nfo criteri	8.265274
Sum squared resid	8961.801	Schwarz o	criterion	8.385719
Log likelihood	-182.9687	F-statist	tic	6385.025
Durbin-Watson stat	0.337638	Prob(F-st	tatistic)	0.000000

Here is the regression output using EViews. It was obtained by loading the workfile, clicking on Quick, then on Estimate, and then typing HOUS C DPI PRELHOUS in the box. Note that in EViews you must include C in the command if your model has an intercept.

Dependent Variable: HOUS Method: Least Squares Sample: 1959 2003 Included observations: 45				
Variable	Coefficient	Std. Error	t-Statisti	c Prob.
С	334.6657	37.26625	8.980396	0.0000
DPI	0.150925	0.001665	90.65785	0.0000
PRELHOUS	-3.834387	0.460490	-8.326764	0.0000
R-squared	0.996722	Mean depe	endent var	630.2830
Adjusted R-squared	0.996566	S.D. depe	endent var	249.2620
S.E. of regression	14.60740	Akaike in	nfo criteri	8.265274
Sum squared resid	8961.801	Schwarz o	criterion	8.385719
Log likelihood	-182.9687	F-statis	tic	6385.025
Durbin-Watson stat	0.337638	Prob (F-st	tatistic)	0.00000

We will start by interpreting the coefficients. The coefficient of *DPI* indicates that if aggregate income rises by \$1 billion, aggregate expenditure on housing services rises by \$151 million. Is this a plausible figure?

Dependent Variable: HOUS Method: Least Squares Sample: 1959 2003 Included observations: 45				
Variable	Coefficient	Std. Error 1	t-Statisti	c Prob.
C	334.6657	37.26625	8.980396	0.0000
DPI	0.150925	0.001665	90.65785	0.0000
PRELHOUS	-3.834387	0.460490 -	-8.326764	0.0000
R-squared	0.996722	Mean deper	ndent var	630.2830
Adjusted R-squared	0.996566	S.D. deper	ndent var 2	249.2620
S.E. of regression	14.60740	Akaike inf	fo criteri	8.265274
Sum squared resid	8961.801	Schwarz cı	riterion	8.385719
Log likelihood	-182.9687	F-statist	ic	6385.025
Durbin-Watson stat	0.337638	Prob(F-sta	atistic)	0.00000

Possibly. It implies that 15 cents out of the marginal dollar are spent on housing. Housing is the largest category of consumer expenditure, so we would expect a substantial coefficient. Perhaps it is a little low.

Dependent Variable Method: Least Squar Sample: 1959 2003 Included observatio	: HOUS res ons: 45			
Variable	Coefficient	Std. Error	t-Statisti	c Prob.
C DPI PRELHOUS	334.6657 0.150925 -3.834387	37.26625 0.001665 0.460490	8.980396 90.65785 -8.326764	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.996722 0.996566 14.60740 8961.801 -182.9687 0.337638	Mean depe S.D. depe Akaike in Schwarz o F-statist Prob(F-st	endent var endent var nfo criteri criterion tic tatistic)	======= 630.2830 249.2620 8.265274 8.385719 6385.025 0.000000

The coefficient of *PRELHOUS* indicates that a one-point increase in this price index causes expenditure on housing to fall by \$3.84 billion. It is not easy to determine whether this is plausible. At least the effect is negative.

Dependent Variable: HOUS Method: Least Squares Sample: 1959 2003 Included observations: 45				
Variable	Coefficient	Std. Error	t-Statisti	c Prob.
С	334.6657	37.26625	8.980396	0.0000
DPI	0.150925	0.001665	90.65785	0.0000
PRELHOUS	-3.834387	0.460490	-8.326764	0.0000
R-squared	0.996722	Mean depe	endent var	630.2830
Adjusted R-squared	0.996566	S.D. depe	endent var	249.2620
S.E. of regression	14.60740	Akaike in	nfo criteri	8.265274
Sum squared resid	8961.801	Schwarz o	criterion	8.385719
Log likelihood	-182.9687	F-statis	tic	6385.025
Durbin-Watson stat	0.337638	Prob (F-st	tatistic)	0.000000

The constant has no meaningful interpretation. (Literally, it indicates that \$335 billion would be spent on housing services if aggregate income and the price series were both 0.)

Dependent Variable: HOUS Method: Least Squares Sample: 1959 2003 Included observations: 45				
Variable	Coefficient	Std. Error	t-Statisti	.c Prob.
C DPI PRELHOUS	334.6657 0.150925 -3.834387	37.26625 0.001665 0.460490	8.980396 90.65785 -8.326764	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.996722 0.996566 14.60740 8961.801 -182.9687 0.337638	Mean depe S.D. depe Akaike in Schwarz o F-statist Prob(F-st	endent var endent var nfo criteri criterion tic tatistic)	630.2830 249.2620 8.265274 8.385719 6385.025 0.000000

The explanatory power of the model appears to be excellent. The coefficient of *DPI* has a very high *t* statistic, that of price is also high, and R^2 is close to a perfect fit.

$HOUS = \beta_1 DPI^{\beta_2} PRELHOUS^{\beta_3} v$

Constant elasticity functions are usually considered preferable to linear functions in models of consumer expenditure. Here β_2 is the income elasticity and β_3 is the price elasticity for expenditure on housing services.

$HOUS = \beta_1 DPI^{\beta_2} PRELHOUS^{\beta_3} v$

$LGHOUS = \log \beta_1 + \beta_2 LGDPI + \beta_3 LGPRHOUS + \log v$

We linearize the model by taking logarithms. We will regress *LGHOUS*, the logarithm of expenditure on housing services, on *LGDPI*, the logarithm of disposable personal income, and *LGPRHOUS*, the logarithm of the relative price index for housing services.

Dependent Variable: LGHOUS Method: Least Squares Sample: 1959 2003 Included observations: 45				
Variable	Coefficient	Std. Error	t-Statisti	======================================
С	0.005625	0.167903	0.033501	0.9734
LGDPI	1.031918	0.006649	155.1976	0.0000
LGPRHOUS	-0.483421	0.041780	-11.57056	0.0000
R-squared	0.998583	Mean depe	endent var	 6.359334
Adjusted R-squared	0.998515	S.D. depe	endent var (0.437527
S.E. of regression	0.016859	Akaike in	fo criter-	5.263574
Sum squared resid	0.011937	Schwarz c	riterion -	5.143130
Log likelihood	121.4304	F-statist	cic :	14797.05
Durbin-Watson stat	0.633113	Prob(F-st	atistic)	0.00000

Here is the regression output. The estimate of the income elasticity is 1.03. Is this plausible?

Dependent Variable: Method: Least Squar Sample: 1959 2003 Included observatio	LGHOUS ces ons: 45			
Variable	Coefficient	Std. Error	t-Statisti	======================================
C	0.005625	0.167903	0.033501	0.9734
LGDPI	1.031918	0.006649	155.1976	0.0000
LGPRHOUS	-0.483421	0.041780	-11.57056	0.0000
R-squared	0.998583	Mean depe	endent var (6.359334
Adjusted R-squared	0.998515	S.D. depe	endent var (0.437527
S.E. of regression	0.016859	Akaike in	nfo criter-!	5.263574
Sum squared resid	0.011937	Schwarz o	criterion -!	5.143130
Log likelihood	121.4304	F-statis	tic :	14797.05
Durbin-Watson stat	0.633113	Prob (F-st	tatistic) (0.00000

Probably. Housing is an essential category of consumer expenditure, and necessities generally have elasticities lower than 1. But it also has a luxury component, in that people tend to move to more desirable housing as income increases.

Dependent Variable: Method: Least Squar Sample: 1959 2003 Included observatio	: LGHOUS res ons: 45			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.005625	0.167903	0.033501	0.9734
LGDPI	1.031918	0.006649	155.1976	0.0000
LGPRHOUS	-0.483421	0.041780	-11.57056	0.0000
R-squared	0.998583	Mean depe	endent var 6	5.359334
Adjusted R-squared	0.998515	S.D. depe	endent var 0	.437527
S.E. of regression	0.016859	Akaike in	nfo criter-5	.263574
Sum squared resid	0.011937	Schwarz o	criterion -5	.143130
Log likelihood	121.4304	F-statist	tic 1	.4797.05
Durbin-Watson stat	0.633113	Prob(F-st	tatistic) 0	.000000

Thus an elasticity near 1 seems about right. The price elasticity is 0.48, suggesting that expenditure on this category is not very price elastic.

Dependent Variable Method: Least Squar Sample: 1959 2003 Included observatio	: LGHOUS res ons: 45			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.005625	0.167903	0.033501	0.9734
LGDPI	1.031918	0.006649	155.1976	0.0000
LGPRHOUS	-0.483421	0.041780	-11.57056	0.0000
R-squared	0.998583	Mean depe	endent var 6	5.359334
Adjusted R-squared	0.998515	S.D. depe	endent var O	. 437527
S.E. of regression	0.016859	Akaike in	nfo criter-5	5.263574
Sum squared resid	0.011937	Schwarz o	criterion -5	5.143130
Log likelihood	121.4304	F-statis	tic 1	4797.05
Durbin-Watson stat	0.633113	Prob (F-st	tatistic) (.000000

Again, the constant has no meaningful interpretation.

Dependent Variable Method: Least Squar Sample: 1959 2003 Included observatio	: LGHOUS res ons: 45			
Variable	Coefficient	Std. Error	t-Statisti	c Prob.
C	0.005625	0.167903	0.033501	0.9734
LGDPI	1.031918	0.006649	155.1976	0.0000
LGPRHOUS	-0.483421	0.041780	-11.57056	0.0000
R-squared	0.998583	Mean depe	endent var	6.359334
Adjusted R-squared	0.998515	S.D. depe	endent var	0.437527
S.E. of regression	0.016859	Akaike in	nfo criter-	5.263574
Sum squared resid	0.011937	Schwarz o	criterion -	5.143130
Log likelihood	121.4304	F-statist	tic	14797.05
Durbin-Watson stat	0.633113	Prob(F-st	tatistic)	0.000000

The explanatory power of the model appears to be excellent.

	Current and lagged values of the logarithm of disposable personal income			
_	Year	LGDPI	<i>LGDPI</i> (–1)	
1959	5.4914	_		
1960	5.5426	5.4914		
1961	5.5898	5.5426		
1962	5.6449	5.5898		
1963	5.6902	5.6449		
1964	5.7371	5.6902		
	·····			
1999	6.8861	6.8553		
2000	6.9142	6.8861		
2001	6.9410	6.9142		
2002	6.9679	6.9410		
2003	6.9811	6.9679		

Next, we will introduce some simple dynamics. Expenditure on housing is subject to inertia and responds slowly to changes in income and price. Accordingly we will consider specifications of the model where it depends on lagged values of income and price.

	Current and lagged values of the logarithm of disposable personal income							
	Year	LGDPI	LGDPI(-1)					
1959	5.4914	_						
1960	5.5426	5.4914						
1961	5.5898	5.5426						
1962	5.6449	5.5898						
1963	5.6902	5.6449						
1964	5.7371	5.6902						
1999	6.8861	6.8553						
2000	6.9142	6.8861						
2001	6.9410	6.9142						
2002	6.9679	6.941 <mark>0</mark>						
2003	6.9811	6.9679						

A variable X lagged one time period has values that are simply the previous values of X, and it is conventionally denoted X(-1). Here LGDPI(-1) has been derived from LGDPI. You can see, for example, that the value of LGDPI(-1) in 2003 is just the value of LGDPI in 2002.

	Current and lagged values of the logarithm of disposable personal income							
	Year	LGDPI	<i>LGDPI</i> (–1)					
1959	5.4914	_						
1960	5.5426	5.4914						
1961	5.5898	5.5426						
1962	5.6449	5.5898						
1963	5.6902	5.6449						
1964	5.7371	5.6902						
1999	6.8861	6.8553						
2000	6.9142	6.8861						
2001	6.9410	6.9142						
2002	6.9679	6.9410						
2003	6.9811	6.9679						

Similarly for the other years. Note that *LGDPI*(–1) is not defined for 1959, given the data set. Of course, in this case, we could obtain it from the 1960 issues of the *Survey of Current Business*.

	Current and lagged values of the logarithm of disposable personal income							
-	Year	L	GDPI	<i>LGDPI</i> (–1)	LGDPI(-2)			
1959	5.4914							
1960	5.5426	5.4914						
1961	5.5898	5.5426	5.4914					
1962	5.6449	5.5898	5.5426					
1963	5.6902	5.6449	5.5898					
1964	5.7371	5.6902	5.6449					
1999	6.8861	6.8553	6.8271					
2000	6.9142	6.8861	6.8553					
2001	6.9410	6.914 <mark>2</mark>	<mark>6.886</mark> 1					
2002	6.9679	6.9410	6.9142					
2003	6.9811	6.9679	6.9410					

Similarly, *LGDPI*(–2) is *LGDPI* lagged 2 time periods. *LGDPI*(–2) in 2003 is the value of *LGDPI* in 2001, and so on. Generalizing, X(-s) is X lagged s time periods.

Dependent Variable Method: Least Squar Sample(adjusted): 1 Included observatio	: LGHOUS res 1960 2003 ons: 44 afte	r adjusting	endpoints	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.019172	0.148906	0.128753	0.8982
LGDPI (-1)	1.006528	0.005631	178.7411	0.0000
LGPRHOUS (-1)	-0.432223	0.036461	-11.85433	0.0000
R-squared	0.998917	Mean depe	endent var 6	.379059
Adjusted R-squared	0.998864	S.D. depe	endent var O	.421861
S.E. of regression	0.014218	Akaike in	nfo criter-5	.602852
Sum squared resid	0.008288	Schwarz d	criterion -5	.481203
Log likelihood	126.2628	F-statis	tic 1	8906.98
Durbin-Watson stat	0.919660	Prob(F-st	tatistic) 0	.000000

Here is a logarithmic regression of current expenditure on housing on lagged income and price. Note that EViews, in common with most regression applications, recognizes X(-1) as being the lagged value of X and there is no need to define it as a distinct variable.

Dependent Variable Method: Least Squar Sample(adjusted): 1 Included observatio	: LGHOUS res 1960 2003 ons: 44 afte	r adjusting	endpoints	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.019172	0.148906	0.128753	0.8982
LGDPI(-1)	1.006528	0.005631	178.7411	0.0000
LGPRHOUS (-1)	-0.432223	0.036461	-11.85433	0.0000
		=============	=============	======
R-squared	0.998917	Mean depe	endent var 6	5.379059
Adjusted R-squared	0.998864	S.D. depe	endent var (.421861
S.E. of regression	0.014218	Akaike in	nfo criter-5	5.602852
Sum squared resid	0.008288	Schwarz d	criterion -5	5.481203
Log likelihood	126.2628	F-statist	tic 1	.8906.98
Durbin-Watson stat	0.919660	Prob(F-st	tatistic) (.000000

The estimate of the lagged income and price elasticities are 1.01 and 0.43, respectively.

Alterna	tive dynamic	specification	s, housing serv	vices
Variable	(1)	(2)		
<i>LGDPI</i> 1.03- (0.01)	_			
<i>LGDPI</i> (–1) - (0.01	— 1.01)			
LGDPI(-2) -				
<i>LGPRHOUS -</i> (0.04)	-0.48 —			
LGPRHOUS(- (0.04	-1) — -0.43)			
LGPRHOUS(-	-2) — —			
R ²	0.9985	0.9989		

The regression results will be summarized in a table for comparison. The results of the lagged-values regression are virtually identical to those of the current-values regression.

Alternative dy Variable	ynamic s (1)	pecificatio (2)	ns, hous (3)	ing services
LGDPI 1.03— — (0.01) LGDPI(–1) — 1.0)1—			
(0.01) <i>LGDPI</i> (–2) <u>–</u> – (0.01)	0.98			
<i>LGPRHOUS –</i> 0.48 (0.04)				
<i>LGPRHOUS</i> (–1) — (0.04)	-0.43	—		
LGPRHOUS(–2) — (0.04)	<u> </u>	38		
R^2 (.9985	0.9989	0.9988	

So also are the results of regressing *LGHOUS* on *LGDPI* and *LGPRHOUS* lagged two years.

Alternative dynamic specifications, housing services						
Variable	(1)	(2)	(3)	(4)		
<i>LGDPI</i> 1.03— — (0.01) <i>LGDPI</i> (–1) — 1.	· 0.33 (0.15) 01— 0.0	68				
(0.01) <i>LGDPI</i> (–2) — — (0.01)	(0.15) • 0.98—					
<i>LGPRHOUS –</i> 0.48 (0.04)	(0.17)	-0.09				
<i>LGPRHOU</i> S(–1) — (0.04)	-0.43 (0.17)	— — — — — — — — — — —	6			
LGPRHOUS(–2) — (0.04)	0).38 —				
R ²	0.9985	0.9989	0.9988	0.9990		

One approach to discriminating between the effects of current and lagged income and price is to include both in the equation. Since both may be important, failure to do so may give rise to omitted variable bias.

Alternative dy	/namic s	pecificatio	ons, housin	ig service	es
Variable	(1)	(2)	(3)	(4)	
<i>LGDPI</i> 1.03— — (0.01) <i>LGDPI</i> (-1) — 1.0	0.33 (0.15) 1— 0.6	8			
(0.01) <i>LGDPI</i> (–2) — — (0.01)	(0.13) 0.98—				
<i>LGPRHOUS –</i> 0.48 (0.04)	(0.17)	-0.09			
<i>LGPRHOUS</i> (–1) — (0.04)	-0.43 (0.17)	— — — — — — — — — —	6		
LGPRHOUS(–2) — (0.04)	— –0 .	.38 —			
<i>R</i> ² 0	.9985	0.9989	0.9988	0.9990	

With the current values of income and price, and their values lagged one year, we see that lagged income has a higher coefficient than current income. This is plausible, since we expect inertia in the response.

Alternativ	ve dynamic s	pecificati	ons, housi	ng service	S
Variable	(1)	(2)	(3)	(4)	
<i>LGDPI</i> 1.03— (0.01) <i>LGDPI</i> (-1) — (0.01)	— 0.33 (0.15) 1.01— 0.6 (0.15)	8			
LGDPI(-2) — (0.0	— 0.98— 01)				
<i>LGPRHOUS –</i> 0. (0.04)	48 <u> </u>	-0.09			
<i>LGPRHOUS</i> (–1) (0.04)	— -0.43 (0.17)	— -0.3	6		
LGPRHOUS(–2) (0.0	— — — — 0. 04)	.38 —			
R^2	0.9985	0.9989	0.9988	0.9990	

The price side of the model exhibits similar behavior.

However there is a problem of multcollinearity caused by the high correlation between current and lagged values. The correlation is particularly high for current and lagged income.

The correlation is also high for current and lagged price.

Alternative dy	/namic s	pecificatio	ons, housir	ng service	es
Variable	(1)	(2)	(3)	(4)	
<i>LGDPI</i> 1.03— — (0.01) <i>LGDPI</i> (–1) — 1.0 (0.01)	0.33 (0.15) 1— 0.6 (0.15)	8			
<i>LGDPI</i> (–2) <u>–</u> – (0.01)	0.98—				
<i>LGPRHOUS –</i> 0.48 (0.04)	(0.17)	-0.09			
<i>LGPRHOUS</i> (–1) — (0.04)	-0.43 (0.17)	— -0.3	6		
<i>LGPRHOUS</i> (–2) — (0.04)	— — — — — — —	.38 —			
<i>R</i> ² 0	.9985	0.9989	0.9988	0.9990	

Notice how the standard errors have increased. The fact that the coefficients seem plausible is probably just an accident.

Alternative	dynamic s	specificati	ons, housi	ng services	5
Variable	(1)	(2)	(3)	(4)	(5)
<i>LGDPI</i> 1.03— · (0.01)	— 0.330.2 (0.15)	29 (0.14)			
<i>LGDPI</i> (–1) — (0.01)	1.01— 0.0 (0.15)	680.22 (0.20)			
<i>LGDPI</i> (–2) — (0.01	0.98) (0,	0.49 .13)			
<i>LGPRHOUS –</i> 0.48 (0.04)	3	-0.09 (0.17)	-0.28		
LGPRHOUS(–1) · (0.04)	— — — 0.43 (0.17)	— — —0.3 (0.30)	36 0.23		
LGPRHOUS(–2) · (0.04		.38 — .18)	-0.38		
R^2	0.9985	0.9989	0.9988	0.9990	0.9993

If we add income and price lagged two years, the results become even more erratic. For a category of expenditure such as housing, where one might expect long lags, this is clearly not a constructive approach to determining the lag structure.

Estimates of long-run income and price elasticities

Specification (1) (2) (3) (4) (5)

Sum of income elasticities 1.031.010.981.011.00

Sum of price elasticities -0.48 -0.43 -0.38 -0.45 -0.43

 $Y_{t} = \beta_{1} + \beta_{2}X_{t} + \beta_{3}X_{t-1} + \beta_{4}X_{t-2} + u_{t}$

$$\mathbf{\tilde{Y}} = \boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 \mathbf{\tilde{X}} + \boldsymbol{\beta}_3 \mathbf{\tilde{X}} + \boldsymbol{\beta}_4 \mathbf{\tilde{X}} = \boldsymbol{\beta}_1 + (\boldsymbol{\beta}_2 + \boldsymbol{\beta}_3 + \boldsymbol{\beta}_4) \mathbf{\tilde{X}}$$

Despite the problem of multicollinearity, we may be able to obtain relatively precise estimates of the long-run elasticities with respect to income and price.

Estimates of long-run income and price elasticities

Specification (1) (2) (3) (4) (5)

Sum of income elasticities 1.031.010.981.011.00

Sum of price elasticities -0.48 -0.43 -0.38 -0.45 -0.43

 $Y_{t} = \beta_{1} + \beta_{2}X_{t} + \beta_{3}X_{t-1} + \beta_{4}X_{t-2} + u_{t}$

$$\mathbf{\tilde{Y}} = \boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 \mathbf{\tilde{X}} + \boldsymbol{\beta}_3 \mathbf{\tilde{X}} + \boldsymbol{\beta}_4 \mathbf{\tilde{X}} = \boldsymbol{\beta}_1 + (\boldsymbol{\beta}_2 + \boldsymbol{\beta}_3 + \boldsymbol{\beta}_4) \mathbf{\tilde{X}}$$

The usual way of investigating the long-run relationship between Y and X is to perform an exercise in comparative statics. One first determines how equilibrium Y would be related to equilibrium X, if the process ever reached equilibrium.

Estimates of long-run income and price elasticities

Specification (1) (2) (3) (4) (5)

Sum of income elasticities 1.031.010.981.011.00

Sum of price elasticities -0.48 -0.43 -0.38 -0.45 -0.43

 $Y_{t} = \beta_{1} + \beta_{2}X_{t} + \beta_{3}X_{t-1} + \beta_{4}X_{t-2} + u_{t}$

$$\mathbf{\tilde{Y}} = \boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 \mathbf{\tilde{X}} + \boldsymbol{\beta}_3 \mathbf{\tilde{X}} + \boldsymbol{\beta}_4 \mathbf{\tilde{X}} = \boldsymbol{\beta}_1 + (\boldsymbol{\beta}_2 + \boldsymbol{\beta}_3 + \boldsymbol{\beta}_4) \mathbf{\tilde{X}}$$

One then evaluates the effect of a change in equilibrium X on equilibrium Y.

Estimates of long-run income and price elasticities

Specification (1) (2) (3) (4) (5)

Sum of income elasticities 1.031.010.981.011.00

Sum of price elasticities -0.48 -0.43 -0.38 -0.45 -0.43

 $Y_{t} = \beta_{1} + \beta_{2}X_{t} + \beta_{3}X_{t-1} + \beta_{4}X_{t-2} + u_{t}$

$$\tilde{Y} = \beta_1 + \beta_2 \tilde{X} + \beta_3 \tilde{X} + \beta_4 \tilde{X} = \beta_1 + (\beta_2 + \beta_3 + \beta_4) \tilde{X}$$

In the model with two lags shown, $(\beta_2 + \beta_3 + \beta_4)$ is a measure of the long-run effect of X. We contrast this with the short-run effect, which is simply β_2 , the impact of current X_t on Y_t .

Estimates of long-run income and price elasticities

Specification (1) (2) (3) (4) (5)

Sum of income elasticities 1.031.010.981.011.00

Sum of price elasticities -0.48 -0.43 -0.38 -0.45 -0.43

 $Y_{t} = \beta_{1} + \beta_{2}X_{t} + \beta_{3}X_{t-1} + \beta_{4}X_{t-2} + u_{t}$

$$\tilde{Y} = \beta_1 + \beta_2 \tilde{X} + \beta_3 \tilde{X} + \beta_4 \tilde{X} = \beta_1 + (\beta_2 + \beta_3 + \beta_4) \tilde{X}$$

We can calculate the long-run effect from the point estimates of β_2 , β_3 , and β_4 in the original specification. The estimate of the sum may be quite stable, even though the estimates of the individual coefficients may be subject to multicollinearity.

Estimates of long-run income and price elasticities

Specification (1) (2) (3) (4) (5)

Sum of income elasticities 1.031.010.981.011.00

Sum of price elasticities -0.48 -0.43 -0.38 -0.45 -0.43

 $Y_{t} = \beta_{1} + \beta_{2}X_{t} + \beta_{3}X_{t-1} + \beta_{4}X_{t-2} + u_{t}$

$$\tilde{Y} = \beta_1 + \beta_2 \tilde{X} + \beta_3 \tilde{X} + \beta_4 \tilde{X} = \beta_1 + (\beta_2 + \beta_3 + \beta_4) \tilde{X}$$

The table presents an example of this. It gives the sum of the income and price elasticities for the five specifications of the logarithmic housing demand function considered earlier. The estimates of the long-run elasticities are very similar.

Estimates of long-run income and price elasticities

Specification (1) (2) (3) (4) (5)

Sum of income elasticities 1.031.010.981.011.00

Sum of price elasticities -0.48 -0.43 -0.38 -0.45 -0.43

 $Y_t = \boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 X_t + \boldsymbol{\beta}_3 X_{t-1} + \boldsymbol{\beta}_4 X_{t-2} + \boldsymbol{u}_t$

$$\mathbf{\tilde{Y}} = \boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 \mathbf{\tilde{X}} + \boldsymbol{\beta}_3 \mathbf{\tilde{X}} + \boldsymbol{\beta}_4 \mathbf{\tilde{X}} = \boldsymbol{\beta}_1 + (\boldsymbol{\beta}_2 + \boldsymbol{\beta}_3 + \boldsymbol{\beta}_4) \mathbf{\tilde{X}}$$

$$Y_{t} = \beta_{1} + (\beta_{2} + \beta_{3} + \beta_{4})X_{t} - \beta_{3}(X_{t} - X_{t-1}) - \beta_{4}(X_{t} - X_{t-2}) + u_{t}$$

If we are estimating long-run effects, we need standard errors as well as point estimates. The most straightforward way of obtaining the standard error is to reparameterize the model. In the case of the present model, we could rewrite it as shown.

Estimates of long-run income and price elasticities

Specification (1) (2) (3) (4) (5)

Sum of income elasticities 1.031.010.981.011.00

Sum of price elasticities -0.48 -0.43 -0.38 -0.45 -0.43

 $Y_t = \boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 X_t + \boldsymbol{\beta}_3 X_{t-1} + \boldsymbol{\beta}_4 X_{t-2} + \boldsymbol{u}_t$

$$\mathbf{\tilde{Y}} = \boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 \mathbf{\tilde{X}} + \boldsymbol{\beta}_3 \mathbf{\tilde{X}} + \boldsymbol{\beta}_4 \mathbf{\tilde{X}} = \boldsymbol{\beta}_1 + (\boldsymbol{\beta}_2 + \boldsymbol{\beta}_3 + \boldsymbol{\beta}_4) \mathbf{\tilde{X}}$$

$$Y_{t} = \beta_{1} + (\beta_{2} + \beta_{3} + \beta_{4})X_{t} - \beta_{3}(X_{t} - X_{t-1}) - \beta_{4}(X_{t} - X_{t-2}) + u_{t}$$

The point estimate of the coefficient of X_t will be the sum of the point estimates of β_2 , β_3 , and β_4 in the original specification and so the standard error of that coefficient is the standard error of the estimate of the long-run effect.

Estimates of long-run income and price elasticities

Specification (1) (2) (3) (4) (5)

Sum of income elasticities 1.031.010.981.011.00

Sum of price elasticities -0.48 -0.43 -0.38 -0.45 -0.43

 $Y_t = \boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 X_t + \boldsymbol{\beta}_3 X_{t-1} + \boldsymbol{\beta}_4 X_{t-2} + \boldsymbol{u}_t$

$$\mathbf{\tilde{Y}} = \boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 \mathbf{\tilde{X}} + \boldsymbol{\beta}_3 \mathbf{\tilde{X}} + \boldsymbol{\beta}_4 \mathbf{\tilde{X}} = \boldsymbol{\beta}_1 + (\boldsymbol{\beta}_2 + \boldsymbol{\beta}_3 + \boldsymbol{\beta}_4) \mathbf{\tilde{X}}$$

$$Y_{t} = \beta_{1} + (\beta_{2} + \beta_{3} + \beta_{4})X_{t} - \beta_{3}(X_{t} - X_{t-1}) - \beta_{4}(X_{t} - X_{t-2}) + u_{t}$$

Since X_t may well not be highly correlated with $(X_t - X_{t-1})$ or $(X_t - X_{t-2})$, there may not be a problem of multicollinearity and the standard error may be relatively small.

Dependent Variable Method: Least Squa: Sample(adjusted): : Included observatio	: LGHOUS res 1961 2003 ons: 43 afte:	adjusting	endpoints		
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C		0.133685	0.349839	0.7285	
LGDPI	1.000341	0.006997	142.9579	0.0000	
X1	-0.221466	0.196109	-1.129302	0.2662	
X2	-0.491028	0.134374	-3.654181	0.0008	
LGPRHOUS	-0.425357	0.033583	-12.66570	0.0000	
P1	-0.233308	0.298365	-0.781955	0.4394	
P2	0.378626	0.175710	2.154833	0.0379	
======================================		Mean dep	endent var 6	. 398513	
Adjusted R-squared	0.999143	S.D. dep	endent var 0	. 406394	

The output shows the result of fitting the reparameterized model for housing with two lags (Specification (5) in the table). X1 = LGDPI - LGDPI(-1), X2 = LGDPI - LGDPI(-2), P1 = LGPRHOUS - LGPRHOUS(-1), and P2 = LGPRHOUS - LGPRHOUS(-2).

	=============	============		======	
Dependent Variable: Method: Least Squar	LGHOUS ces				
Sample(adjusted): 1	.961 2003				
Included observatio	ons: 43 after	adjusting	endpoints		
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C	0.046768	0.133685	0.349839	0.7285	
LGDPI	1.000341	0.006997	142.9579	0.0000	
X1	-0.221466	0.196109	-1.129302	0.2662	
X2	-0.491028	0.134374	-3.654181	0.0008	
LGPRHOUS	-0.425357	0.033583	-12.66570	0.0000	
P1	-0.233308	0.298365	-0.781955	0.4394	
P2	0.378626	0.175710	2.154833	0.0379	
R-squared	0.999265	Mean depe	endent var 6	.398513	
Adjusted R-squared	0.999143	S.D. depe	endent var 0	. 406394	
$Y_t = \boldsymbol{\beta}_1 + (\boldsymbol{\beta}_1)$	$\beta_2 + \beta_3 + \beta_3$	$(X_4)X_t - \beta_3$	$X_t - X_{t-1}$	$(\beta_1) - \beta_4$	$X_t - X_{t-2}$
DUIDIN MACSON Stat	0.001210	ETOD (E S	Latistic, V		

As expected, the point estimates of the coefficients of *LGDPI* and *LGPRHOUS*, 1.00 and –0.43, are the sum of the point estimates of the coefficients of the current and lagged terms in Specification (5).

 $+u_{i}$

Dependent Variable:	LGHOUS				
Method: Least Squar	es				
Sample(adjusted): 1	961 2003				
Included observatio	ons: 43 after	adjusting	endpoints		
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C	0.046768	0.133685	0.349839	0.7285	
LGDPI	1.000341	0.006997	142.9579	0.0000	
X1	-0.221466	0.196109	-1.129302	0.2662	
X 2	-0.491028	0.134374	-3.654181	0.0008	
LGPRHOUS	-0.425357	0.033583	-12.66570	0.0000	
P1	-0.233308	0.298365	-0.781955	0.4394	
P2	0.378626	0.175710	2.154833	0.0379	
R-squared	0.999265	Mean depe	endent var 6	.398513	
Adjusted R-squared	0.999143	S.D. depe	endent var 0	. 406394	
$Y_t = \boldsymbol{\beta}_1 + (\boldsymbol{\beta}_1)$	$\beta_2 + \beta_3 + \beta_3$	$(B_4)X_t - \beta_3$	$X_t - X_{t-1}$	$(\beta_1) - \beta_4$	$(X_t - X_{t-2})$
DUIDIN MALSON SLAL	0.001210	ETOD (E S	Lalislic, v		

Also as expected, the standard errors, 0.01 and 0.03, are much lower than those of the individual coefficients in Specification (5).

)+ u,

Copyright Christopher Dougherty 2016.

These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author.

The content of this slideshow comes from Section 11.3 of C. Dougherty, Introduction to Econometrics, fifth edition 2016, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre <u>http://www.oup.com/uk/orc/bin/9780199567089/</u>.

Individuals studying econometrics on their own who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics <u>http://www2.lse.ac.uk/study/summerSchools/summerSchool/Home.aspx</u> or the University of London International Programmes distance learning course 20 Elements of Econometrics <u>www.londoninternational.ac.uk/lse</u>.