BBA182 Applied Statistics
 Week 9 (1)
 Calculating the probability of a continuous random variable - Normal Distribution

DR SUSANNE HANSEN SARAL
EMAIL: SUSANNE.SARAL@OKAN.EDU.TR
HTTPS://PIAZZA.COM/CLASS/IXRJ5MMOX1U2T8?CID=4\#
WWW.KHANACADEMY.ORG

lid-term exam statistics

OKAN ÜNIVERSITESI
 ISTANBUL

Mid-term statistics	
Mean	0.563554
Median	0.57
Mode	0.61
Standard Deviation	0.173872
Sample Variance	0.030231
Kurtosis	0.080928
Skewness	-0.28804
Range	0.885
Minimum	0.115
Maximum	1
Sum	68.19
Count	121

1id-term exam statistics

OKAN ÜNIVERSITESI

Continuous random variable

A continuous random variable can assume any value in an interval on the real line or in a collection of intervals.

It is not possible to talk about the probability of the random variable assuming a particular value, because the probability will be close to 0.

Instead, we talk about the probability of the random variable assuming a value within a given interval.

Calculating probabilities of continuous random variables

$$
\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})=\mathrm{F}(\mathrm{~b})-\mathrm{F}(\mathrm{a})
$$

The Standard Normal Distribution --values

Any normal distribution, $\mathrm{F}(\mathrm{x})$ (with any mean and standard deviation combination) can be transformed into the standardized normal distribution $F(z)$, with mean 0 and standard deviation 1
f(Z)
$Z \sim N(0,1)$

We say that Z follows the standard normal distribution.

rocedure for calculating the probability of x using the Standard Normal Table

For $\mu=100, \sigma=15$, find the probability that X is less than $130=\mathrm{P}(x<130)$
Transforming x - random variable into a z - standard random variable:

$$
\begin{aligned}
Z & =\frac{X-\mu}{\sigma}=\frac{130-100}{15} \\
& =\frac{30}{15}=2 \mathrm{std} \mathrm{dev}
\end{aligned}
$$

FIGURE 2.9

- Normal Distribution

$$
\mu=100
$$

$$
\sigma=15
$$

Procedure for calculating the probability of x using the Standard Normal Table (conifiued)

Step 2

- Look up the probability from the table of normal curve areas
- Column on the left is Z value
- Row at the top has second decimal places for Z values

Using the Standard Normal Table

TABLE 2.10 - Standardized Normal Distribution (partial)

	AREA UNDER THE NORMAL CURVE			
\mathbf{z}	0.00	0.01	0.02	0.03
1.8	$0.9 \pitchfork 107$	0.96485	0.96562	0.96638
1.9	0.97128	0.97193	0.97257	0.97320
2.0	0.97725	0.97784	0.97831	0.97882
2.1	0.98214	0.98257	0.98300	0.98341
2.2	0.98610	0.98645	0.98679	0.98713

$$
\begin{aligned}
& \text { For } Z=2.00 \\
& \qquad \begin{array}{l}
P(X<130)=P(Z<2.00)=0.97725 \\
P(X>130)=1-P(X \leq 130)=1-P(Z \leq 2) \\
\quad=1-0.97725=0.02275
\end{array}
\end{aligned}
$$

In probability terms, a z-score of -2.0 and +2.0 has the same probability, because they are mirror images of each other.

If we look for the \mathbf{z}-score $\mathbf{2 . 0}$ in the table we find a value of 9772.

The Standard Normal Table

To find the probability of: $P(z>1)$ and $P(z<-1)$ we will use the complement rule:

Finding the probability of z-scores

$$
\begin{aligned}
& P(z<+0.55)=0.7088 \quad \text { or } 70.88 \% \\
& P(z>+.55)=1.0-0.7088=0.2912 \text { or } 29.12 \% \\
& P(z>-0.55)=0.7088 \text { or } 70.88 \% \\
& P(z<-0.55)=1.0-.7088=0.2912 \text { or } 29.12 \% \\
& P(z<+1.65)=0.9505 \text { or } 95.05 \% \\
& P(z>+1.65)=1.0-0.9505=0.0495 \text { or } 4.96 \% \\
& P(z>-2.36)=.9909 \text { or } 99.09 \% \\
& P(z<+2.36)=.9909 \text { or } 99.09 \%
\end{aligned}
$$

Determine for shampoo filling machine 1 the proportion of bottles that:

$$
\mu=500 \mathrm{ml} \sigma=10 \mathrm{ml}
$$

Contain less than $510 \mathrm{ml} \mathrm{P}(x<510)$
Contain more than $515 \mathrm{ml} P(x>515)$
Contains more than $480 \mathrm{ml} P(x>480)$
Contain less than $490 \mathrm{ml} P(x<490)$
Contain more than $505 \mathrm{ml} P(x>505)$

Solution: Contain more than 515 ml $P(x>515 m l)$

1. Draw the graph to see which area we are looking for:
2. Z-score $=\frac{515-500}{10}=1.5 \quad=\quad P(z>1.5)$
3. We can find $\mathrm{P}(\mathrm{z}<1.5)=.9332$ directly from the table

$$
P(z>1.5)=1-.9332=.0668
$$

6.68% of the shampoo bottles contain more than 515 ml .

Solution: Contain more than 505 ml

$$
P(x>505) ?
$$

1. Draw the curve so you see which probability area we are looking for.
2. Z-score $=\frac{505-500}{10}=0.5=P(z<.5)=.6915$
3. $P(z>0.5)=1-.6915=.3085$
30.85% of the shampoo bottles contain more than 505 ml shampoo.

Draw a graph of the below probabilities and find the probability of z in the standard normal table with $\mu=0, \sigma=1$
$P(z<+1.05)=$
$P(z>-1.05)=$
$P(z<-3.34)=$
$P(z>-3.34)=$
$P(z>-2.47)=$
$P(z<+1.87)=$
$P(z>+2.57)=$
$P(z<-0.32)=$

Exercise:

Find the probability of z-scores and draw a graph of the probability

- istanbul

$$
\begin{aligned}
& P(z<+1.05)=0.8531 \text { or } 85.31 \% \\
& P(z>-1.05)=0.8531 \text { or } 85.31 \% \\
& P(z<-3.34)=1.0-0.9996=0.0004 \text { or } 0.04 \% \\
& P(z>-3.34)=0.9996 \text { or } 99.96 \% \\
& P(z>-2.47)=0.9932 \text { or } 99.32 \% \\
& P(z<+1.87)=0.9693 \text { or } 96.93 \% \\
& P(z>+2.57)=1.0-0.9949=0.0054 \text { or } 0.054 \% \\
& P(z<-0.32)=1.0-0.6255=0.3745 \text { or } 37.45 \%
\end{aligned}
$$

Haynes Construction Company Example

Builds three- and four-unit apartment buildings:

- Total construction time follows a normal distribution
\circ For triplexes, $\mu=100$ days and $\sigma=20$ days
- Contract calls for completion in 125 days
- Late completion will incur a severe penalty fee
- Calculate the probability of completing in less than 125 days $\mathrm{P}(\mathrm{x}<125)$

Haynes Construction Company

Compute Z:

$$
\begin{aligned}
Z & =\frac{X-\mu}{\sigma}=\frac{125-100}{20} \\
& =\frac{25}{20}=1.25 \quad \mathrm{P}(\mathrm{z}<1.25) ?
\end{aligned}
$$

- From the table for $Z=1.25$ area $\mathrm{P}(\mathrm{z}<1.25)=0.8944$

Haynes Construction Company

- Con

The probability is about 0.89 or 89 \% that Haynes will not violate the contract
$Z=\begin{aligned} & \text { that Haynes will not violate the contract } \\ & 0\end{aligned}$

$$
=\frac{25}{20}=1.25
$$

- From the table for $Z=1.25$ area $=0.89435$

Haynes Construction Company

What is the probability that the company will not finish in 125 days and therefore will have to pay a penalty?

$$
Z=\frac{X-\mu}{\sigma}=125-100 / 20=1.25
$$

FIGURE 2.10

Haynes Construction Company

What is the probability that the company will not finish in 125 days and therefore will have to pay a penalty?

$$
\begin{aligned}
Z & =\frac{X-\mu}{\sigma}=\frac{125-100}{20} \\
& =\frac{25}{20}=1.25 \quad P(\mathrm{z}>1.25) ?
\end{aligned}
$$

- From the table for $Z=1.25$
area $\mathrm{P}(\mathrm{z}>1.25)=$ $1-\mathrm{P}(\mathrm{z}<1.25)=1-0.8944=$ 0.1056 or 10.56 \%

FIGURE 2.10

Haynes Construction Company

If finished in 75 days or less, Haynes will get a bonus of $\$ 5,000$ - What is the probability of a bonus? $\mathrm{P}(\mathrm{x}<75)$
$\mu=100$ days and $\sigma=20$ days

$$
Z=\frac{X-\mu}{\sigma}
$$

Haynes Construction Company

If finished in 75 days or less, bonus $=\$ 5,000$

- Probability of bonus? P(x<75)

$$
\begin{aligned}
Z & =\frac{X-\mu}{\sigma}=\frac{75-100}{20} \\
& =\frac{-25}{20}=-1.25 \quad \mathrm{P}(\mathrm{z}<-1.25) ?
\end{aligned}
$$

- Because the distribution is symmetrical, equivalent to $Z=1.25$ $P(z<1.25)$ so area $=$ 0.8944

Probability of completing between 110 and 125 days?

$$
P(110<X<125) ?
$$

$$
\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})=\mathrm{F}(\mathrm{~b})-\mathrm{F}(\mathrm{a})
$$

okan univigritirsiHaynes Construction Company

Probability of completing between 110 and 125 days?

$$
P(110<X<125) ? \quad \mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})=\mathrm{F}(\mathrm{~b})-\mathrm{F}(\mathrm{a})
$$

$$
\begin{aligned}
& \mathrm{P}\left(\frac{a-\mu}{\sigma}<z<\frac{b-\mu}{\sigma}\right)=\mathrm{P}\left(\frac{110-100}{20}<z<\frac{125-100}{20}\right)= \\
& F(b)-F(a)=\mathrm{F}(1.25)-\mathrm{F}(0.5)=.8944-.6915=.2029 \\
& \mathrm{P}(.05<\mathrm{z}<1.25)=.2029 \text { or } 20.29 \%
\end{aligned}
$$

OKAN ÜNIVERSITESI - ISYME
Probability of cc $P(110<X<125)$
$P(110 \leq X<125)=0.8944-0.6915$
$=0.2029$
The probability of completing between 110 and 125 days is about 20\%

Calculation procedure to find the probability of the area under the normal curve:

1. First draw the normal curve for the problem, to understand what area under the curve we are looking for.
2. Transform x-values to the standardized random variable, z

$$
Z=\frac{X-\mu_{x}}{\sigma_{X}}
$$

3. Use the standardized normal distribution table to find the probability of the calculated z-value
