Introductory Statistics

Lesson 2.5 A

Objective:
SSBAT find the first, second and third quartiles of a data set. SSBAT find the interquartile range of a data set. SSBAT represent data using a box and whisker plot.

Standards: M11.E.2.1.2, M11.E.1.1.2

Fractiles

\square Numbers that partition or divide an ordered data set into equal parts.
— The median of a data set is a fractile

Quartiles

— Approximately divide a data set into 4 equal parts
(There are 3 quartiles: First, Second, Third

$2^{\text {nd }}$ Quartile, \mathbf{Q}_{2}

(The Median of the entire data set

- Half the data entries lie on or below Q_{2} and the other half lies on or above Q_{2}

$1^{\text {st }}$ Quartile, \mathbf{Q}_{1}

— The Median of the Lower half of the data set (below Q_{2})
— It divides the lower half of the data in half

$3^{\text {rd }}$ Quartile, \mathbf{Q}_{3}

— The Median of the Upper half of the data set (above Q_{2})
— It divides the upper half of the data in half

— The Quartiles approximately divide the data into 4 equal parts, therefore 25% of the data is in each part
25% of the data is below Q_{1}
25% of the data is between Q_{1} and Q_{2}
25% of the data is between Q_{2} and Q_{3}
25% of the data is above Q_{3}

Example 1: the test scores of 15 employees enrolled in a CPR training course are listed. Find the first, second, and third quartiles of the test scores.
$\begin{array}{llllllllllllll}13 & 9 & 18 & 15 & 14 & 21 & 7 & 10 & 11 & 20 & 5 & 18 & 37 & 16\end{array}$
$1^{\text {st. Write the numbers in order from least to greatest }}$
$\begin{array}{llllllllllllll}5 & 7 & 9 & 10 & 11 & 13 & 14 & 15 & 16 & 18 & 18 & 20 & 21 & 37\end{array}$

$$
\begin{gathered}
Q_{2}=14.5 \\
Q_{1}=10 \\
Q_{3}=18
\end{gathered}
$$

Example 2: The tuition costs (in thousands of dollars) for 11 universities are listed. Find the first, second, and third quartiles.
$20,26,28,19,31,17,15,21,31,32,16$
$1^{\text {st. Write the numbers in order from least to greatest }}$
$\begin{array}{lllllllllll}15 & 16 & 17 & 19 & 20 & 21 & 26 & 28 & 31 & 31 & 32\end{array}$

$$
\begin{aligned}
& Q_{2}=21 \\
& Q_{1}=17 \\
& Q_{3}=31
\end{aligned}
$$

Interquartile Range (IQR)

— The difference between the third and first quartiles

$$
\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}
$$

Find the Interquartile range from Example 1

($Q_{1}=10$ and $Q_{3}=18$
$18-10=8$
IQR = 8

Find the Interquartile range from Example 2

($Q_{1}=17$ and $Q_{3}=31$
$31-17=14$
IQR = 14

IQR - Interquartile Range $\quad\left(Q_{3}-Q_{1}\right)$

— Gives an idea of how much the middle 50% of the data varies

- It can also be used to identify Outliers
- Any number that is more than 1.5 times the IQR to the left of Q_{1} or to the right of Q_{3} is an outlier

Take a look at Example $1 \square$ The IQR is 8

$$
\begin{aligned}
& \begin{array}{lllllllllllll}
5 & 7 & 9 & 10 & 11 & 13 & 14 & 15 & 16 & 18 & 18 & 20 & 21
\end{array} 37 \\
& Q_{2}=14.5 Q_{1}=10 \quad Q_{3}=18
\end{aligned}
$$

Check for Outliers: Multiply 1.5 times the IQR

$$
(1.5)(8)=12
$$

Add 12 to $\mathrm{Q}_{3} \square 30$
Any number greater than 30 in the set is an outlier \square therefore 37 is an outlier

Subtract 12 from $Q_{1} \square \quad-2$
Any number less than -2 is an outlier \square there are none

Box and Whisker Plot

Example:

http://www.mathsisfun.com/data/images/box-whisker-plot.gif

Box and Whisker Plot

- A graph that shows the Median $\left(\mathrm{Q}_{2}\right)$, Quartile 1, Quartile 3, the lowest number in the set and the highest number in the set
- About 25% of the data set is in each section

Steps for creating a box and whisker plot

1. Find the Median $\left(Q_{2}\right)$ of all the numbers
2. Find Quartile 1 and Quartile 3
3. Identify the smallest and largest number in the set
4. Make a number line that spans all of the numbers in the set
5. Above the number line, Create a box using Q_{1} and Q_{3} and draw a vertical line through the box at Q_{2}
6. Draw whiskers on each side of box to the smallest and largest value in the set - Put a dot at both of these endpoints

Examples: Create a Box and Whisker Plot for each.

1. Years of service of a sample of PA state troopers $\begin{array}{cccccccc}12 & -7 & 9 & 18 & \wedge & 12 & 11 / 13 \\ 6 & 13 & 20 & 27 & 15 & 11 & \wedge 3\end{array}$

$$
\begin{array}{llll}
\text { Smallest }=6 \\
\text { Largest }=27 & Q_{1}=9 & Q_{2}=12 & Q_{3}=18
\end{array}
$$

PA State Troopers Years of Service

2.

$$
\begin{aligned}
111 \quad 115 \quad 122 \quad 127 \quad 127{ }^{11} 147 \\
151{ }^{159} 160 \quad 160 \quad 163168
\end{aligned}
$$

$$
\begin{aligned}
& Q_{1}=124.5 \\
& Q_{2}=149 \\
& Q_{3}=160
\end{aligned}
$$

Smallest 111
Largest: 168

Distribution Shape Based on Box and Whisker Plot

- If the median is near the center of the box and each whisker is approximately the same length, the distribution is roughly Symmetric.
- If median is to the left of center of the box or right whisker is substantially longer than the left, the distribution is Skewed Right.
- If median is to the right of center of the box or the left whisker is substantially longer than the right, the distribution is Skewed Left.
\square Complete together \#11 on page 109

Homework

> Page $109-110$
> $\# 1,12,14,18,19,20$

