Физические методы измерений

Лекция 2

Основные блоки измерительных устройств

В систему подается входной сигнал x_e , а после обработки на ее выходе появляется сигнал x_a . Обе эти величины связаны друг с другом определенными соотношениями, которые характеризуют систему.

Эти соотношения называют передаточными характеристиками.

Многие передаточные характеристики не зависят от конкретного прибора, а имеют общую природу.

Статические передаточные характеристики

Между выходным х_а и входным х_е сигналами существует функциональная зависимость

$$x_a = f(x_e)$$
. (1) $-x_e \rightarrow M$ $-x_a \rightarrow M$

Такая функциональная зависимость для измерительной системы должна быть однозначной.

Она, например, не должна обладать гистерезисом (при возрастании и убывании измеряемой величины зависимость f(xe) должна оставаться одной и той же).

$$x_a = f(x_e). (1)$$

Если функциональная зависимость (1) изображена графически, то ее называют **характеристической кривой**.

С точки зрения техники измерений удобнее всего работать с линейными зависимостями, т. е. прямыми, которые к тому же проходат просодативного отсчета.

Величину К называют **коэффициентом передачи**, её размерность

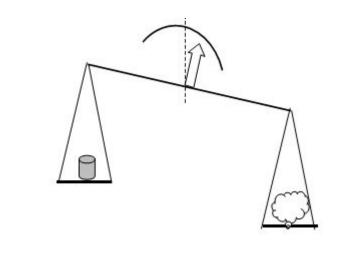
$$[K] = [x_a] \cdot [x_e]^{-1}$$
 (3)

Если речь идет о сложном измерительном приборе или целом измерительном устройстве, то величину К обычно называют **чувствительностью S**.

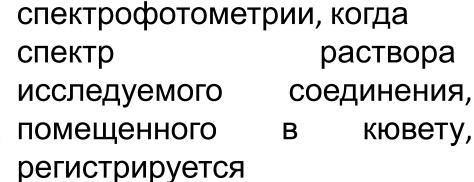
Величина чувствительности показывает, какое изменение Δxe входного сигнала необходимо для того, чтобы выходной сигнал изменился на Λ···

$$S = \frac{\Delta x_a}{x_e} \equiv K \tag{4}$$

Если схема содержит **нелинейный элемент**, то чувствительность S определяется по нелинейной характеристической кривой с помощью производной: $S = \frac{dx}{1}$ (5)


В этом случае чувствительность уже не постоянна, а зависит от $[\mathbf{x}_{\mathrm{e}};\ \mathbf{x}_{\mathrm{a}}].$ рабочей точки

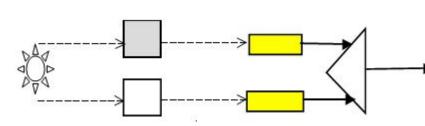
Методы измерений


Рассматривая различные по физическому содержанию методы измерений, можно выделить **три основных подхода** к их проведению— метод отклонений, разностный и нулевой метод измерений.

- 1. Метод отклонений состоит в том, что измеряется вся величина.
- 2. Разностным методом измеряется отклонение интересующей нас величины от какого-либо стандарта.
- 3. Нулевой метод измерения состоит в полной компенсации измеряемой величины путем приложения внешнего воздействия. Регистрируется при этом не сама величина, а факт отсутствия сигнала.

Разностный метод

коромысловые весы показывают отличие веса груза от веса гири при неполном уравновешивании системы

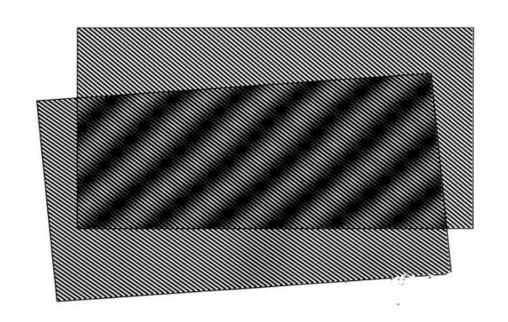

кюветы,

схеме

кювету, относительно точно такой же заполненной

двухлучевой

это помонять принцельный выпуска в помонять помонать помо поглощения, исключив смещение нулевой линии (показано пунктиром на рис.), вызванное рассеянием света



Разностный метод лежит в основе исследования периодических процессов или структур путем сравнения их с периодическими эталонами.

Известно, что при сложении двух звуковых волн с различными периодами возникают биения, период которых Т зависит от разности частот звуковых волн:

$$T = \frac{2\pi}{\Delta\omega} \tag{6}$$

Возникновение картины муара (пространственные биения) при наложении двух периодических структур со слабо различающимися периодами

Пространственный период L в этом случае выражается аналогично

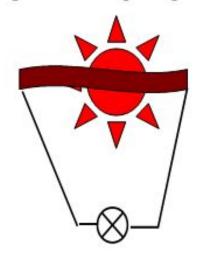
$$L = \frac{2\pi}{\Delta k}; \qquad (k = \frac{2\pi}{\lambda}) \tag{7}$$

k - волновое

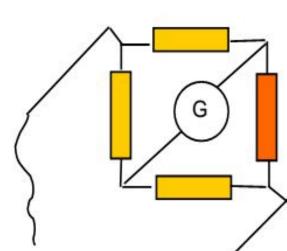
ОДАЛА из главных достоинств разностного метода измерений является перенос масштабов, на которых производятся измерения.


В соответствии с (6) и (7) возникающие масштабы Т и L тем больше, чем меньше различия в периодах исследуемой и эталонной структурой.

Пространственный масштаб L дифракционной картины, возникающий при рассеянии рентгеновских лучей на кристалле с периодичностью~1Å, составляет несколько миллиметров.


Нулевой метод измерения

Датчик механических смещений


Яркостный пирометр

в механических измерениях служит упругая мембрана, деформация которой измеряется по изменению емкости конденсатора, одной из пластин которого мембрана является.

Пример оптических нулевых измерений— определение температуры светящегося тела с помощью яркостного пирометра. Яркость объекта сравнивают с яркостью нагреваемой током нити, совпадение яркостей («исчезновение» нити на фоне изображения) свидетельствует о равенстве температур.

Мост Уитстона

Классическим примером нулевого метода является использование моста Уитстона для измерения электрических величин

Основные характеристики измерительных систем

Важнейшими метрологическими характеристиками любой измерительной системы являются

- чувствительность,
- разрешающая способность,
- динамический диапазон,
- пространственное разрешение,
- время отклика

Величина чувствительности показывает, какое изменение Δхе входного сигнала необходимо для того, чтобы выходной сигнал изменился на Δха

Разрешающей способностью называют отношение

$$R = \frac{x}{\delta x}$$

δх- минимальное изменение входного сигнала, которое может быть обнаружено. Важно подчеркнуть, что значение R не является абсолютной характеристикой данного метода измерений.

Если предположить, что δх является константой во всем диапазоне измеряемых значений х, то разрешающая способность возрастает в области больших

х Динамический диапазон D

$$D = \frac{x_{\text{max}}}{x_{\text{min}}} \to \frac{x_{\text{max}}}{\delta x}$$

определяет ширину области, в которой сигналы могут быть измерены.

Пространственное разрешение метода измерений

Пространственное dV или поверхностное dS разрешение можно ввести с помощью следующего соотношения:

$$\delta x = \int_{S} x_{S} dS = \int_{V} x_{V} dV$$

Соотношение не следует понимать так, что пространственное разрешение всегда ограничивается величиной входного сигнала, в ряде случаев предел пространственному разрешению ставят технические возможности изготовления датчика требуемого размера.

Любое физическое измерение требует конечного времени, поскольку в процессе измерения объект и измерительное устройство обмениваются энергией.

Для измерительной системы вводят **понятие времени отклика** т. Символически понятие времени отклика можно ввести соотношением

$$\delta x = \int_{\tau} x_t dt$$

Обратим внимание на то, что во все соотношения входит величина δх, которую называют порогом обнаружения.

Порог обнаружения— это минимальный входной сигнал, который может быть обнаружен с заданной степенью достоверности.

Для создания «хорошей» во всех отношениях измерительной системы нужно устремить $\delta x \to 0$, но это стремление вступает в противоречие с достоверностью обнаружения сигнала. Надежность регистрации сигнала ограничивают погрешности измерений.

Качество измерений характеризуется:

- точностью,
- достоверностью,
- правильностью,
- сходимостью
- воспроизводимостью измерений.

Точность измерительного прибора это - метрологическая характеристика прибора, определяемая *погрешностью измерения*, в пределах которой можно обеспечить использование данного измерительного прибора

Класс точности средства измерений (ГОСТ 8.401-80) является обобщенной характеристикой средства намерений, Класс точности характеризует свойства средства измерения, но не является показателем точности выполненных измерений, поскольку при определении погрешности измерения необходимо учитывать погрешности метода, настройки и др.

В зависимости от точности приборы разделяются на *классы*: первый, второй и т.д.

Допускаемые погрешности для разных типов приборов регламентируются государственными стандартами.

Точность - это качество измерений, отражающее близость их результатов к истинному значению измеряемой величины.

Количественная оценка точности - обратная величина модуля относительной погрешности. Например, если погрешность измерений равна 10 -6, то точность равна 10 6.

Точность измерения зависит от погрешностей возникающих в процессе их проведения

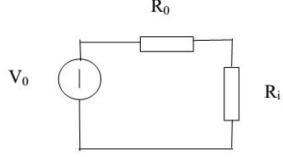
- **Абсолютная погрешность** измерения разность между значением величины, полученным при измерении, и ее истинным значением, выражаемая в единицах измеряемой величины. $\Delta x = x_{\text{изм}} x_{\text{ист}}$
- Относительная погрешность измерения отношение абсолютной погрешности, измерения к истинному значению измеряемой величины. $\delta x = \frac{\Delta x}{x_{\text{HCT}}}$
- Систематическая погрешность измерения составляющая погрешности измерения, остающаяся постоянной или изменяющаяся по определенному закону при повторных измерениях одной и той же величины. Систематическая погрешность может быть исключена с помощью поправки.
- *Случайная погрешность* составляющая погрешности измерения, изменяющаяся при повторных измерениях одной и той же величины случайным образом.
- *Грубая погрешность измерения* погрешность, значение которой существенно выше ожидаемой.

Погрешности измерений

Погрешности принято делить на

- случайные
- систематические.

Систематическая погрешность обусловлена влиянием измерительного устройства на измеряемую величину.


Особенностью систематических погрешностей является то,

что величина их может быть оценена и при необходимости корректирован на величину

$$V_i = V_0 \, \frac{R_i}{R_0 + R_i}$$

Систематическая погрешность при измерении температуры с помощью термопары.

Источники **случайной погрешности** измерений можно разделить на

- шумы
- помехи.

Принципиальное отличие между ними состоит в том, что шумы, в отличие от помех, являются неотъемлемой составляющей процесса измерения и полностью устранены быть не могут, тогда как принципиального запрета на полное устранение помех не существует.

Если ограничиться только электрическими сигналами, то можно выделить три основных источника помех:

- космические,
- атмосферные,
- промышленные.

В зависимости от последовательности причины возникновения различают следующие виды погрешностей.

- Инструментальная погрешность составляющая погрешности измерения, зависящая от погрешностей применяемых средств. Эти погрешности определяются качеством изготовлении самих измерительных приборов.
- *Погрешность метода измерения* составляющая погрешности измерения, вызванная несовершенством метода измерений.
- Погрешность настройки составляющая погрешности измерения, возникающая из-за несовершенства осуществления процесса настройки.

В зависимости от последовательности причины возникновения различают следующие виды

- ПТО РЕШНОСТИТЬ поверки составляющая погрешности измерений, являющаяся следствием несовершенства поверки средств измерений. Погрешности от измерительного усилия действуют в случае контактных измерительных приборов. При оценке влияния измерительного усилия на погрешность измерения, необходимо выделить упругие деформации установочного узла и деформации в зоне контакта измерительного наконечника с деталью.
- Влияющая физическая величина физическая величина, не измеряемая данным средством, но оказывающая влияние на результаты измеряемой величины, например: температура и давление окружающей среды; относительная влажность и др. отличные от нормальных значений.
- Погрешность средства измерения, возникающая при использовании его в нормальных условиях, когда влияющие величины находятся в пределах нормальной области значений, называют основной.

Достоверность измерений .характеризует степень доверия к результатам измерений. Достоверность оценки погрешностей определяют на основе законов теории вероятностей и математической статистики. Это дает возможность для каждого конкретного случая выбирать средства и методы измерений, обеспечивающие получение результата, погрешности которого не превышают заданных границ с необходимой достоверностью.

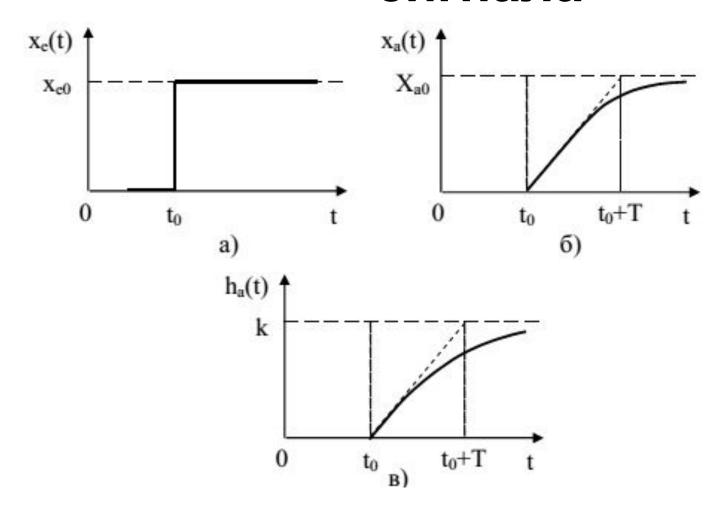
Правильность измерений - это качество измерений, отражающее близость к нулю систематических погрешностей в результатах измерений.

Сходимость - это качество измерений, отражающее близость друг к другу результатов измерений одного и того же параметра, выполненных повторно одними и теми же средствами одним и тем же методом в одинаковых условиях и с одинаковой тщательностью.

Воспроизводимость - это качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, различными методами и средствами).

Дипамические своиства линейных передаточных

ЭЛЕМЕНТОВ Если входная величина xe(t) быстро меняется со временем, TO


ВЫХОДНАЯ ВЕЛИЧИНА МОЖЕТ СОДЕРЖАТЬ ИСКАЖЕНИЯТОЛЬКО ПРЯМАЯ ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА ПОЗВОЛЯЕТ УЧЕСТЬ ВСЕ факторы, которые могут исказить выходной сигнал. В таких проверочных опытах входная величина изменяется по заданному закону, а выходная регистрируется с достаточно большим разрешением по времени.

Зависимости xe(t), которые используют для контроля передаточных характеристик прибора, называют контрольными функциями, а результирующие зависимости xa(t) на выходе — функциями отклика.

Наиболее важными контрольными функциями являются

- ступенчатая,
- единичная импульсная (δ-функция)
- синусоилапьная функции

Передача непериодического сигнала

