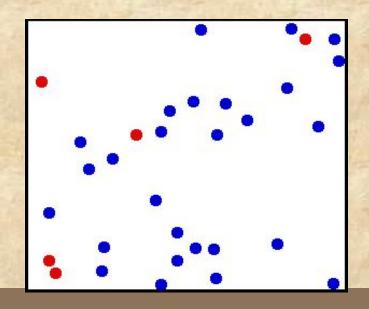
Термодинамика и статистическая физика



Лекция № 6 Энтропия и вероятность.

- 1. Статистический вес макросостояния.
- 2. Формула Больцмана для энтропии равновесного состояния.
- 3. Статистический характер закона возрастания энтропии. Флуктуации. Наиболее вероятное распределение системы по микросостояниям.

Элементы физической кинетики.

1. Процессы релаксации в газах. Роль столкновения частиц. Эффективное сечение. Средняя длина свободного пробега.

Статистический смысл энтропии

Посмотрим на энтропию с другой стороны. Более глубокий смысл энтропии вскрывается в • статистической физике: энтропия связывается с термодинамической вероятностью состояния системы статистическим весом.

Термодинамическая вероятность состояния системы - это число способов, которыми может быть реализовано данное состояние макроскопической системы, или микросостояний, число осуществляющих данное макросостояние (т.е. термодинамивероятность ческая есть вероятность в математическом смысле).

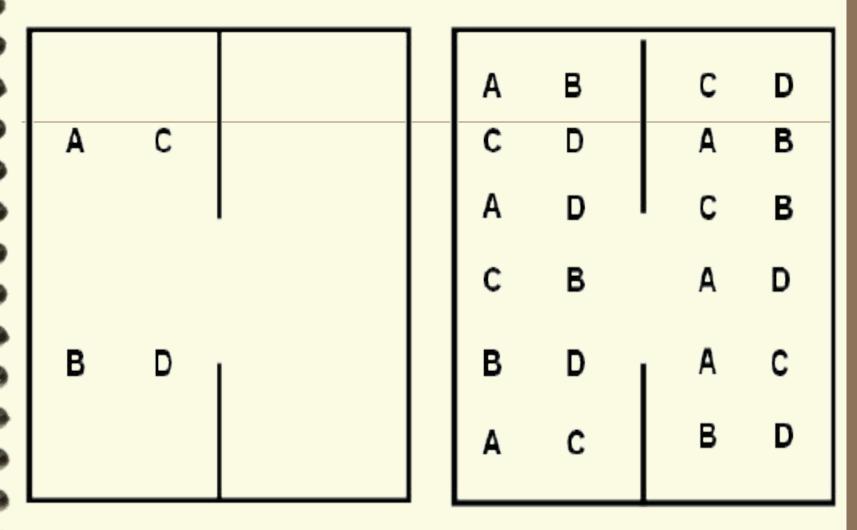
Макросостояние — это состояние вещества, характеризуемое его термодинамическими параметрами (объемом, давлением, температурой и т. д.). Состояние системы, характеризуемое состоянием каждой входящей в систему молекулы, называют микросостоянием.

Так как молекулы движутся хаотически, то имеется много микросостояний, соответствующих одному макросостоянию. Обозначим Ω — число микросостояний соответствующее данному макросостоянию (как правило $\Omega >> 1$). Термодинамической вероятностью статистическим весом макросостояния — называется число микросостояний, осуществляющих данное макросостояние.

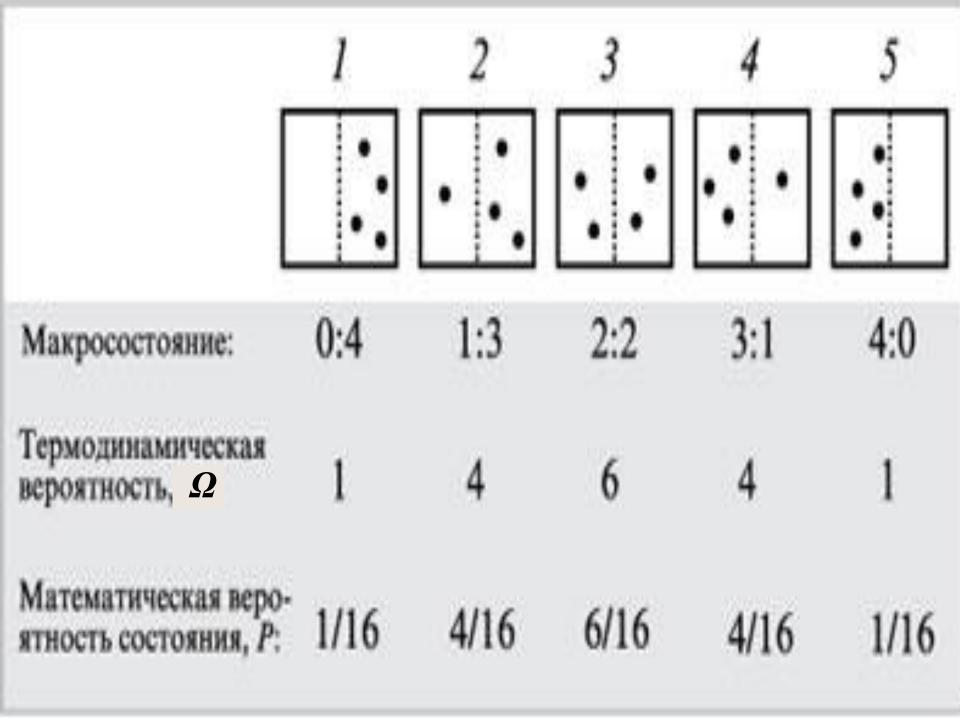
Термодинамическая вероятность Ω
 максимальна, когда система
 находится в равновесном состоянии.

Чтобы пояснить понятие статистического веса (термодинамической вероятности), рассмотрим способы, которыми молекулы газа могут распределиться между двумя половинами сосуда.

В начале сосуд разделен перегородкой и все молекулы собраны только в одной половинке. Далее удаляется перегородка и изучается распространение газа в сосуде. Рассмотрим ситуацию с 4-мя молекулами.



Макросостояние (4,0) Кол-во микросостояний: N=1 Макросостояние (2,2) Кол-во микросостояний: N=6



Состо	ояние	Способы реализации состояния		
число	число	номера моле-	номера моле-	Число способов
молекул	молекул	кул, находя-	кул, находя-	реализации дан-
слева	справа	щихся слева	щихся справа	ного состояния (Ω)
0	4		1, 2, 3, 4	1
		1	2, 3, 4	
1	3	2	1, 3, 4	
		3	1, 2, 4	4
		4	1, 2, 3	
		1,2	3, 4	
		1, 3	2, 4	
2	2	1,4	2, 3	6
		2, 3	1, 4	
		2, 4	1, 3	
		3, 4	1, 2	
		1, 2, 3	4	
3	1	1, 2, 4	3	4
		1,3,4	2	
		2, 3, 4	1	
4	0	1, 2, 3, 4		1
		Всего состояний		$2^4 = 16$

Аналогичная ситуация при числе молекул 24

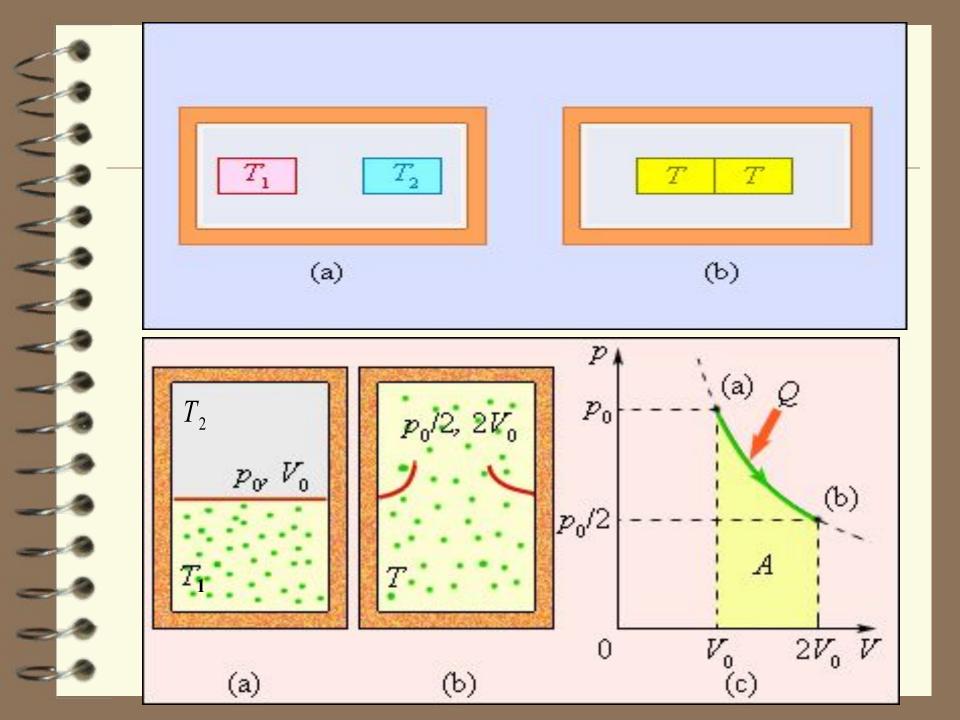
Число м	олекул		Вероятность		
слева	справа	Ω	математическая		
0	24	1	6 • 10 ⁻⁷		
1	23	24	1,4 • 10 ⁻⁶		
2	22	276	1,6 • 10 ⁻⁵		
3	21	2024	1,2 • 10 ⁻⁴		
4	20	10626	6,3 • 10 ⁻⁴		
5	19	42504	2,5 • 10 ⁻³		
6	18	134596	8 • 10 ⁻³		
7	17	346104	2 • 10 ⁻²		
8	16	735471	4,4 • 10 ⁻²		
9	15	1307504	7,8 • 10 ⁻²		
10	14	1961256	0,117		
11	13	2493144	0, 149		
12	12	2704156	0,161		
13	11	2496144	0,149		
23	1	24	1,4 • 10 ⁻⁶		
24	0	1	6 • 10 ⁻⁷		
Всего 2 ²³ = 16777216 способов					

Обратный процесс, в результате которого газ самопроизвольно собрался бы в одной из половин сосуда, невозможен. Это обусловлено тем, что вероятность состояния, при котором молекулы газа распределены поровну между обеими половинами сосуда, **очень велика**, а **Вероятность** состояния, при котором все молекулы газа находились бы в одной из половин сосуда, практически равна нулю.

Из сказанного следует, что для того определить, какие процессы протекать в изолированной термодинамической системе, нужно вероятность различных состояний этой системы. Величина, которая служит для характеристики состояний, получила **вероятности** энтропии. Эта величина название является, подобно внутренней энергии, функцией состояния системы.

Изолированная система будет самопроизвольно переходить из менее вероятных в более вероятные состояния либо преимущественно находиться в состоянии, вероятность которого максимальна.

Для того, чтобы определить, какие процессы могут протекать в изолированной термодинамической системе, нужно знать вероятность различных состояний системы.



Статистический вес Ω обычно выражается огромными числами. Так, например, для одного моля атмосферном кислорода при комнатной давлении температуре:

$$\Omega = 10^{6, 5 \cdot 10^{24}}$$

В основе статистической физики лежит предположение о том, что все микросостояния данной термодинамической системы равновероятны.

Отсюда следует, что вероятность макросостояния пропорциональна его статистическому весу Ω .

Утверждение о равновероятности всех микросостояний носит название эргодической гипотезы.

Эргодическая гипотеза заключается в утверждении, что все микросостояния данной термодинамической системы равновероятны. Следовательно, вероятность макросостояния пропорциональна его статистическому весу.

Использовать <u>статистический</u> <u>вес</u> в качестве величины определяющей вероятность состояния неудобно, так как он <u>не аддитивен</u>.

Разобъём данную систему на две не взаимодействующие подсистемы.

Предположим, что эти подсистемы находятся в состояниях с весами Ω_1 и Ω_2 . Каждое из Ω_1 микросостояний первой подсистемы может реализовываться совместно с каждым из Ω_2 микросостояний второй подсистемы. Всего возможно $\Omega_1\Omega_2$ различных комбинаций микросостояний под-• систем, каждая из которых является микросостоянием системы. То есть статистический вес состояния системы равен $\Omega = \Omega_1 \Omega_2$. Т.е. **статистичесжий вес не аддитивен.**

Но оказывается свойством аддитивности обладает логарифм статистического веса. А иметь дело с аддитивными величинами много проще и удобнее. Аддитивной является логарифм Ω:

$$\ln \Omega = \ln \Omega_1 \Omega_2 = \ln \Omega_1 + \ln \Omega_2 + \dots = \sum_{i=1}^{n} \ln \Omega_i$$

В связи с этим в качестве характеристики вероятности

состояния системы принимается

величина:

 $\sigma = \ln \Omega$

называемая энтропией системы. Определенная так энтропия используется в теоретической физике, где обычно не приходится иметь дело с числовыми значениями величин.

В экспериментальной физике от величины σ переходят к величине $S = k\sigma$, которая также называется

энтропией:

 $S = k \ln \Omega$

Для **одного моля кислорода** при комнатной температуре и атмосферном давлении указанному ранее значению соответствует

$$\sigma = 1,5 \cdot 10^{25}; S = 207 Дж / K$$

Согласно Больцману, энтропия системы и термодинамическая вероятность связаны между собой следующим образом (формула Больцмана):

$$S = k \ln \Omega$$

 $k = 1,38 \cdot 10^{-23} \frac{\text{Дж}}{K}$; где k - постоянная Больцмана.

В состоянии равновесия в термодинамике и вероятность максимальна и энтропия максимальна.

Из этого можно сделать вывод, что между ними существует связь.

Энтропия S – аддитивная величина:

 $S = \sum_{i=1}^{n} S_i$, т.е. она равна сумме энтропий тел, входящих в систему.

Связь между S и Ω позволяет несколько иначе сформулировать второе термодинамики: начало всякий процесс B природе протекает так, что система переходит вероятность которого больше.

Второе начало надо понимать так, что если система находится в каком-то состоянии с данной энтропией, то с подавляющей вероятностью следует, что она перейдёт в состояние с большей энтропией, т.е. что наиболее вероятным изменением энтропии является ее возрастание. Этот закон возрастания энтропии оправдывается практически с абсолютной достоверностью.

Второе начало термодинамики есть статистический закон, согласно которому отступления от термодинамического равновесия – флуктуации — не только возможны, но и неизбежны.

Энтропия — вероятностная статистическая величина. Утверждение о возрастании энтропии потеряло свою категоричность. Её увеличение вероятно, но не исключаются флуктуации.

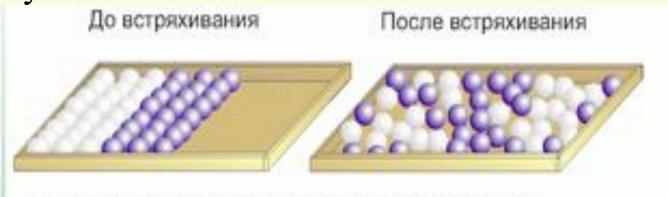
Случайные отклонения значений какой-то физической величины x от её среднего значения < x > называют флуктуациями этой величины:

$$\Delta x = x - \langle x \rangle$$

<u>Энтропия</u> выступает, как <u>мера</u> <u>беспорядочности</u>, хаотичности состояния.

Например, в ящике сиреневые и белые шары. Они порознь, есть порядок и Ω невелика. После встряхивания — шары перемещаются и Ω — увеличивается и энтропия тоже увеличивается.

И сколько бы не встряхивать потом ящик, никогда сиреневые шары не соберутся у одной стенки, а белые у другой, хотя эта вероятность не равна нулю.



Клаузиус в 1867 г. выдвинул гипотезу о тепловой смерти Вселенной. Л. Больцман один из первых опроверг эту гипотезу и показал, что закон возрастания энтропии статистический закон, т.е. возможны отклонения.

Российские физики Я.Б. Зельдович и И.Д. Новиков, так же опровергли эту теорию, и показали, что Р. Клаузиус не учел, что Вселенная не стационарна и в будущем не перейдет к одному состоянию, так она как эволюционирует, остается статичной.

<u>Энтропия</u> системы — <u>максимальна</u>, <u>при достижении замкнутой системой</u> <u>равновесного состояния</u>. При стремлении температуры к абсолютному нулю (T=0 K) уменьшается хаотичность системы. В пределе всякое тело будет находиться в состоянии, статистический вес которого равен единице ($\Omega=1$).

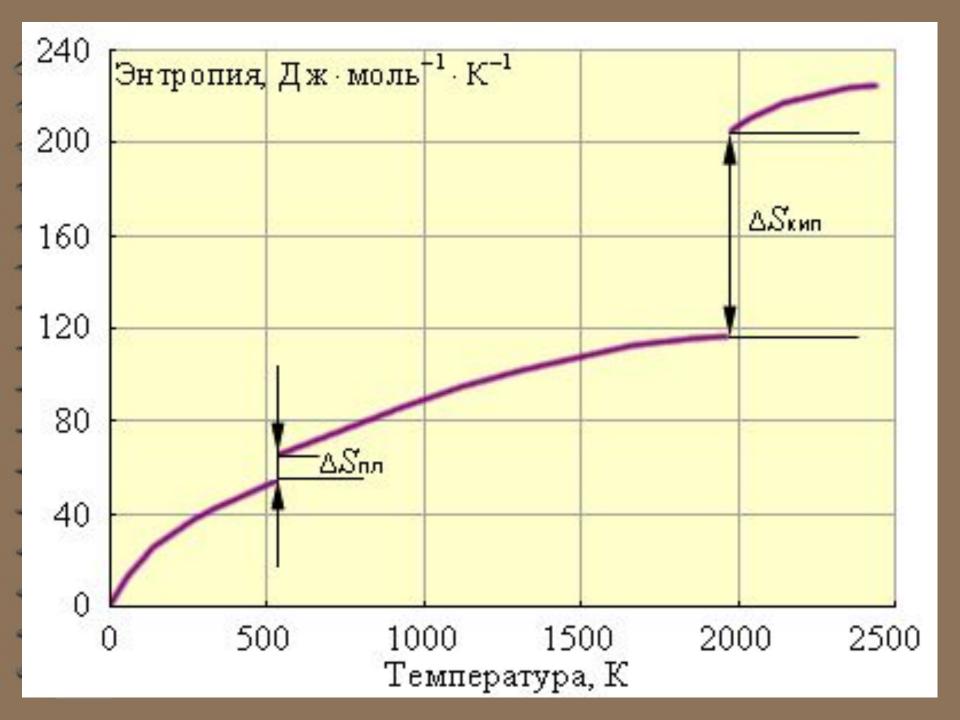
$$S = k \ln \Omega$$
, если $\Omega = 1$, то $S_{T=0} = k \ln 1 = 0$

Вывод: энтропия любого тела стремится к нулю при стремлении к нулю температуры: $\lim_{T\to 0} S = 0$. Это утверждение называется теоремой Нернста или третьим началом термодинамики.

<u>Принцип Нернста</u> был развит <u>Планком</u>, предположившим, что при абсолютном нуле температуры энергия системы минимальна (но не равна нулю). Тогда можно считать, что при абсолютном нуле система имеет <u>одно квантовое</u> $S_{T=0}=0$,

$$S = k \ln \Omega$$
, a $\Omega = 1$, to $S_{T=0} = k \ln 1 = 0$

значит термодинамическая вероятность Ω при T=0 К должна быть равна единице, что недостижимо (принцип недостижимости абсолютного нуля температур)

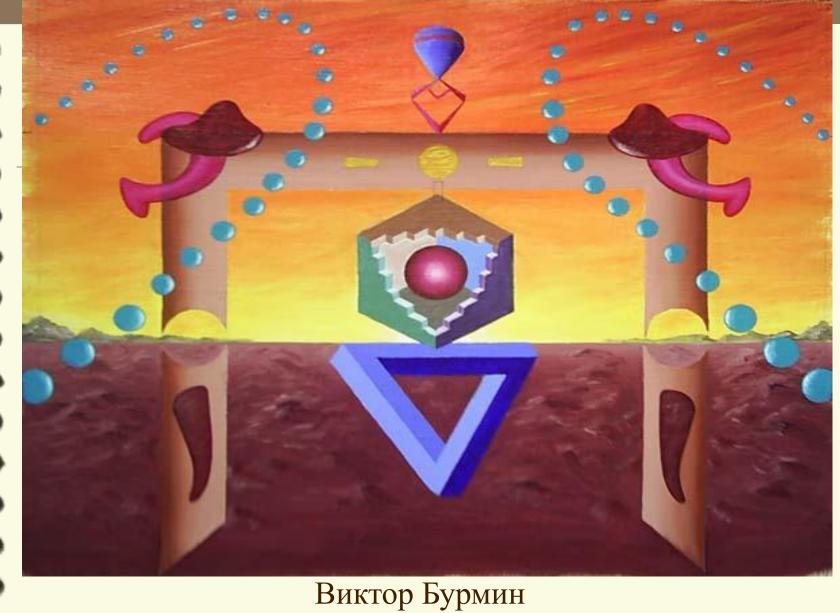


Основные свойства энтропии:

- 1. Энтропия является функцией состояния.
- 2. Для вычисления энтропии системы в данном состоянии относительно какого-нибудь состояния, принятого за нулевое, нужно вычислить значение $S = \int \frac{\delta Q}{T}$
- 3. Энтропия изолированной системы остаётся постоянной, если система претерпевает обратимое изменение состояния.
- 4. Энтропия изолированной системы, необратимо изменяющей своё состояние, возрастает.

- 5. Максимальное значение энтропии соотствует равновесное состояние.
- 6. Энтропия непосредственно связана с вероятностью: $S = k \ln \Omega$. Возрастание энтропии системы при необратимом изменении её состояния означает, что система переходит из менее вероятного в более вероятное состояние. Энтропия является мерой беспорядка системы. Состояния с большим беспорядком характеризуются большей термодинамической вероятностью, чем более упорядоченное состояние.

Уве Бремер «Возрастающая энтропия»

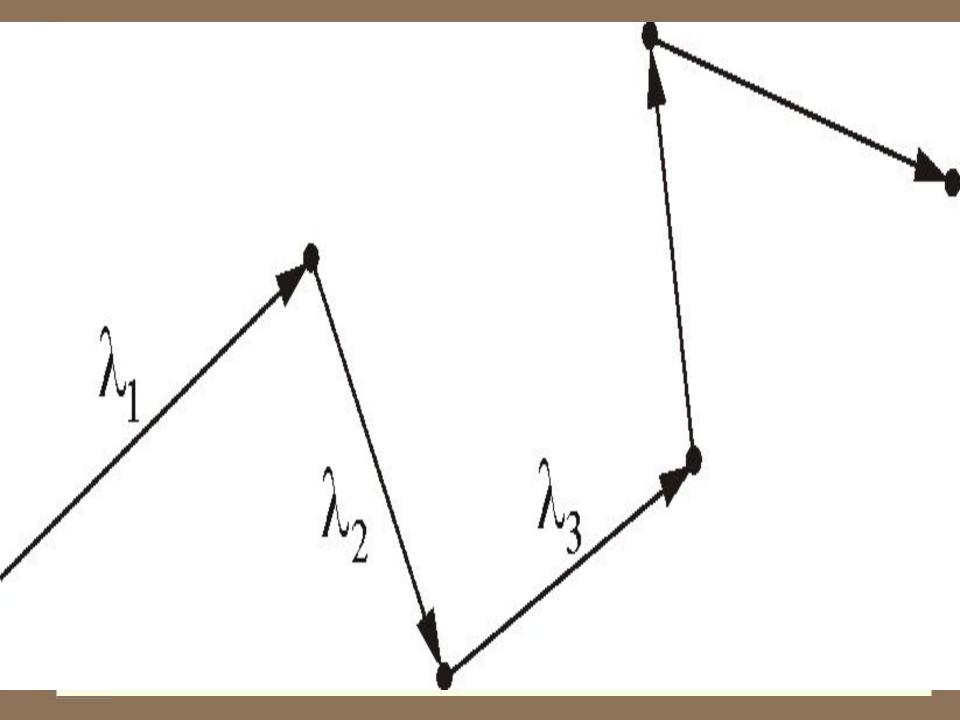


Виктор Бурмин «Энтропия в пространстве не ограниченная во времени»

Далеко не всегда система находится в состоянии термодинамического равновесия. Если температура системы в разных точка неодинакова, то нельзя приписать системе определённое значение температуры. В этом случае состояние называется неравновесным. Процесс перехода системы из неравновесного состояния в равновесное называется процессом релаксации. За время релаксации принимают время, за которое первоначальное отклонение какой-либо величины от равновесного значения <u>уменьшается</u> в e <u>раз</u> (e = 2,7).

Явления переноса в газах

Молекулы в газе движутся CO скоростью звука, с такой же скоростью движется пуля. Однако, находясь в противоположном конце комнаты, запах разлитой пахучей жидкости мы почувствуем через сравнительно большой промежуток времени. Это происходит потому, что молекулы движутся хаотически, сталкиваются друг с траектория движения у них ломанная.



Число столкновений и средняя длина свободного пробега молекул в газах

Обозначим λ – длина свободного пробега молекулы.

Медленность явлений переноса, например диффузии ароматических веществ — «распространение запаха», — при относительно высокой скорости теплового движения молекул

 $(\cong 10^2 - 10^3 \text{ м/c})$ объясняется столкновениями молекул.

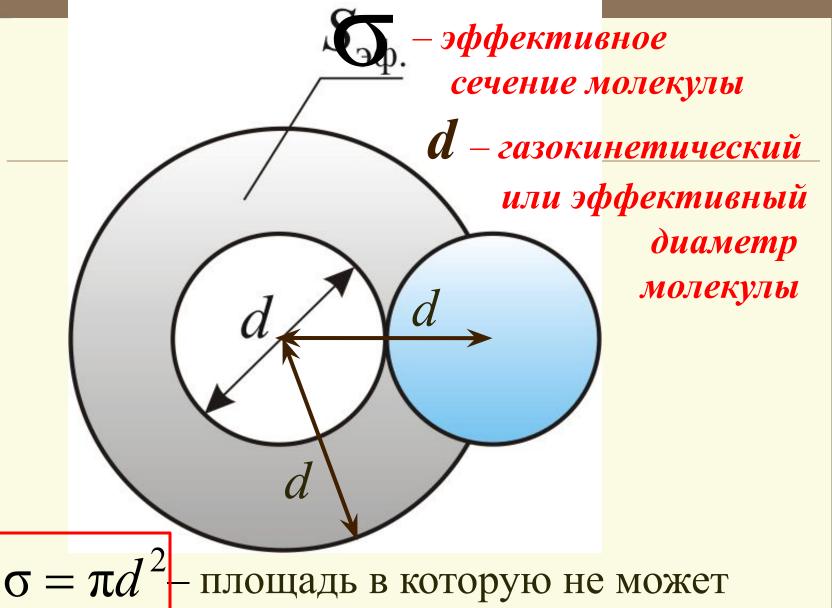
Расстояние, проходимое молекулой в среднем без столкнове-ний, называется средней длиной свободного пробега:

$$<\lambda>=\upsilon_{\rm cp}\tau$$
,

 υ_{cp}^{-} средняя скорость теплового движения, τ_{cp}^{-} среднее время между двумя столкновениями.

Модель идеального газа – твёрдые шарики одного диаметра, взаимодействующие между собой только при столкновении.

Обозначим О — эффективное сечение молекулы — полное поперечное сечение рассеяния, характеризующее столкновение между двумя молекулами.



 $\sigma = \pi d^2$ – площадь в которую не может проникнуть центр любой другой молекулы.

 За одну секунду молекула

 проходит путь, равный средней

 арифметической < v ≥корости.</td>

 За ту же секунду молекула

 претерпевает v столкновений.

$$<\lambda>=\frac{<\upsilon>}{\upsilon}$$

Подсчитаем число столкновений V.

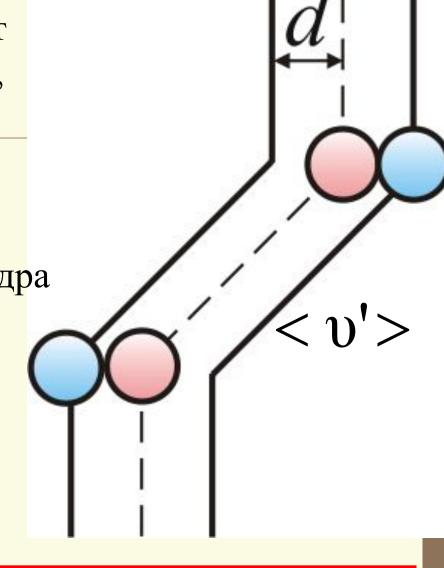
Вероятность столкновения трех и более молекул бесконечно мала. Предположим, что все молекулы застыли, кроме одной. траектория будет представлять собой ломаную линию. Столкновения будут только с теми молекулами, центры которых лежат внутри цилиндра радиусом d.

Путь, который пройдет молекула за одну секунду, равен длине цилиндра

 $<\upsilon'>\sigma$ - объём цилиндра

n - число молекул в единице объёма

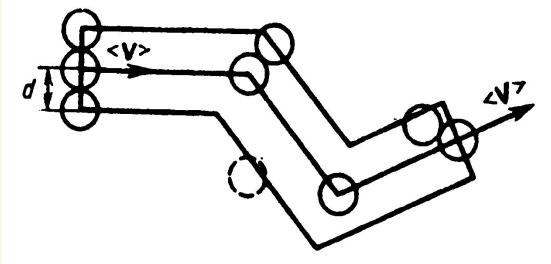
среднее число столкновений в одну секунду:



$$v = \pi d^2 < \upsilon' > n$$

На самом деле, все молекулы движутся (и в сторону и навстречу друг другу), поэтому число соударений определяется средней скоростью движения молекул относительно друг

друга $< \upsilon >$.



По закону сложения случайных величин:

$$<\upsilon'> = \sqrt{<\upsilon'^2> + <\upsilon^2>} = \sqrt{2<\upsilon^2>} = <\upsilon>\sqrt{2}$$

Так как
$$< \lambda > = \frac{< \upsilon >}{\upsilon}$$
 - средняя длина свободного пробега

Тогда:

$$<\lambda> = \frac{1}{\sqrt{2n\pi d^2}} = \frac{1}{\sqrt{2n\sigma}}$$

Из уравнения состояния идеального газа выразим \boldsymbol{n} через давление \boldsymbol{P} и температуру \boldsymbol{T}

Так как
$$P = nkT$$
,

то есть
$$n = \frac{P}{kT}$$
, тогда

$$<\lambda> = \frac{kT}{\sqrt{2\pi}d^2P} = \frac{kT}{\sqrt{2}\sigma P}$$

Таким образом, при заданной температуре, средняя длина свободного пробега обратно пропорциональна давлению P:

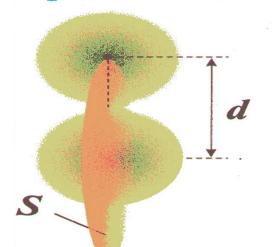
$$<\lambda>\sim \frac{1}{P}$$

Например: $d=3~\text{Å}=3\cdot 10^{-10}~\text{M},$ $P=1~\text{атм.}=10^5~\Pi \text{a}$, T=300~K, a, т.к. $<\upsilon>=\sqrt{\frac{8RT}{\pi\mu}}=10^3~\text{м/c}$ $<\lambda>=10^{-7}~\text{M}$

Число столкновений:

$$v = \frac{10^3}{10^{-7}} = 10^{10}$$

Среднее число соударений Средняя длина свободного пробега молекуль

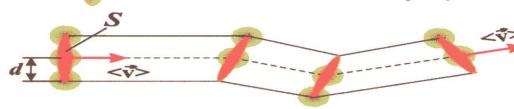


Эффективный диаметр молекулы *d* - кратчайшее расстояние между центрами взаимодействующих молекул

$$S = \pi d^2$$

эффективное сечение

Среднее число соударений молекулы в единицу времени



$$\langle Z \rangle = \frac{\langle N \rangle}{t}$$

$$\langle \mathbf{Z} \rangle = \sqrt{2} \pi d^2 \mathbf{n} \langle \mathbf{v} \rangle$$

Средняя длина свободного пробега молекулы

$$<\lambda> = \frac{<\mathbf{v}>}{<\mathbf{Z}>}$$

$$\langle \lambda \rangle = \frac{1}{\sqrt{2}\pi d^2 n}$$

n - концентрация газаv> - средняя скорость молекул

