Наномеханика

Nanomechanics of materials and systems

Lecture 8 Дислокации в тонких пленках. Dislocations in thin films.

Работа создания дислокации Creation work of dislocation

Энергия дислокации равна работе, затраченной на ее создание

$$W_{
m d}(\eta) = \int_{\Gamma} rac{1}{2} T_i u_i \, dl, \qquad T_i = \sigma_{ij} n_j$$
 - принцип Коши (Cauchy priciple)

$$W_{\rm d}(\eta) = \frac{\mu [b_x^2 + b_y^2 + (1-\nu)b_z^2]}{4\pi (1-\nu)} \ln \frac{2\eta}{r_{\rm o}} + \frac{\mu [b_x^2 + b_y^2]}{8\pi (1-\nu)} \left[\cos 2\alpha - \frac{(1-2\nu)}{2(1-\nu)}\right]$$

Сила, действующая на дислокацию вблизи поверхности Force acting on a dislocation near surface

Энергия дислокации вблизи поверхности (Energy)

$$W_{\rm d}(\eta) \approx \frac{\mu [b_x^2 + b_y^2 + (1-\nu)b_z^2]}{4\pi(1-\nu)} \ln \frac{2\eta}{r_{\rm o}},$$

Собственная сила, притягивающая дислокацию к поверхности (Force)

$$F_{\rm d}(\eta) = -W_{\rm d}'(\eta) = -\frac{\mu[b_x^2 + b_y^2 + (1-\nu)b_z^2]}{4\pi(1-\nu)\eta}$$

G=10¹¹Pa, b=0.2 nm, v=0.3, η=20 nm, F=0.02 N/m

Упругая энергия напряженной тонкой пленки Elastic energy of stressed thin film

Энергия на единицу площади Elastic energy

$$\sigma_{
m m} \epsilon_{
m m} h_{
m f} = M_{
m f} \epsilon_{
m m}^2 h~$$
 = 10¹¹ (0.01)² 50 10⁻⁹ = 0.5J/m²

Работа по созданию дислокации в полоске шириной w=h_f: $W_D = 2.5 \ 10^{-8} J/m^2$ Dislocation self-energy

Работа по созданию дислокации в напряженной пленке Creation work for a dislocation in stressed film

Подложка substrate

Сила, действующая на дислокацию в напряженной пленке Force acting on dislocation

$$F_{\rm m}(\eta) = \begin{cases} b_x \sigma_{\rm m} & \text{for } 0 < \eta < h_{\rm f}, \\ 0 & \text{for } h_{\rm f} < \eta < \infty. \end{cases}$$

Критическая толщина для формирования дислокаций в напряженной пленке: Critical thickness

$$W_{\rm d}(h_{\rm cr}) + W_{\rm m}(h_{\rm cr}) = 0$$

Representative graphs of $W_d(\eta) = \mu_f b^2$ and $W_m(\eta) = \mu_f b^2$ versus η/b for a case where the strained film thickness h_f is exactly the critical thickness h_{cr} . The dashed curve represents the sum of these two energies, and the dislocation position $\eta = h_{cr}$ is evidently the only possible equilibrium position in the closed system. For purposes of illustration, the plot is drawn for $v_f = 0.25$, $r_o = b/2$, $b_z = 0$, $b_x = b_y$ and $\varepsilon_m = 0.005$.

Критическая толщина для формирования дислокаций в напряженной пленке Matthews-Blakeslee critical thickness for dislocation formation in a

stressed thin film

$$W_{\rm d}(h_{\rm cr}) + W_{\rm m}(h_{\rm cr}) = 0$$

$$\frac{[b_x^2 + b_y^2 + (1 - \nu_{\rm f})b_z^2]}{8\pi(1 + \nu_{\rm f})b_xh_{\rm cr}}\ln\frac{2h_{cr}}{r_o} + \frac{[b_x^2 + b_y^2]}{16\pi(1 + \nu_{\rm f})b_xh_{\rm cr}}\left[\cos 2\alpha - \frac{(1 - 2\nu_{\rm f})}{2(1 - \nu_{\rm f})}\right] = \epsilon_{\rm m}$$

$$\frac{[b_x^2+b_y^2+(1-\nu_{\rm f})b_z^2]}{8\pi(1+\nu_{\rm f})b_xh_{\rm cr}}\ln\frac{2h_{\rm cr}}{r_{\rm o}}\approx\epsilon_{\rm m}, ~~h_{\rm cr}\gg b. \label{eq:eq:expansion}$$

$$h_c = \frac{b}{8\pi(1+\nu)\varepsilon_m} \left(\ln \frac{\alpha h_c}{b} \right)$$

Matthews-Blakeslee critical thickness

Критическая толщина. Теория Critical thickness with different dislocation cores

Normalized critical thickness ln(h_{cr}/b) versus mismatch strain magnitude ϵ_m for three values of core cutoff radius r_o = 1/2 b; b; 2b

Критическая толщина. Эксперимент Critical thickness. Experiment

Experimentally observed critical thickness versus mismatch strain for the SiGe/Si(100) system is shown as discrete points. The solid curve represents the

predicted critical thickness for this material system and the dashed curve is the predicted condition simplified by retaining only the logarithmic term, both for $v_f = 0.25$ and $r_o = 1/2$ b. Adapted from Houghton (1991).

Зависимость критической толщины от кристаллографической ориентации Critical thickness for different crystallographic orientations

Разным ориентациям отвечают разные векторы Бюргерса Different crystallographic orientations correspond to different Burgers vectors

Дислокации несоответствия на гетерогранице Si/SiGe

$$a_{\rm SiGe} = (1-x) a_{\rm Si} + x a_{\rm Ge}$$

$$\epsilon_{\rm m} = \frac{a_{\rm Si} - a_{\rm SiGe}}{a_{\rm SiGe}} = x \, \frac{a_{\rm Si} - a_{\rm Ge}}{a_{\rm SiGe}}$$

$$\epsilon_{\rm m} = -0.0418 \, x / (1 + 0.0418 \, x)$$

A plan-view, bright-feld transmission electron microscopy (TEM) image of misfit dislocations within the interface between a 200-nm thick $Si_{0.9}Ge_{0.1}$ film and a much thicker (001) Si substrate. The dislocations form a crossed-grid pattern which is oriented along two <110> directions on the (001) interface plane. After Fukuda et al. (1988).

Критическая толщина для GeSi/Si (001) Critical thickness for GeSi/Si (001)

Кристаллография: вектор Бюргерса, плоскости скольжения; Силы, дествующие на дислокацию

$$\frac{b_x^2 + b_y^2 + (1 - \nu)b_z^2}{8\pi(1 + \nu)b_xh_{cr}}\ln\frac{4h_{cr}}{b} = \varepsilon_m$$

 $a_{
m Si} = 0.5431 \; {
m nm} ~~ a_{
m Ge} = 0.5656 \; {
m nm}$ $a_{
m SiGe} pprox 0.85 a_{
m Si} + 0.15 a_{
m Ge} = 0.5465 \; {
m nm}$

$$\epsilon_{\rm m} = \frac{a_{\rm Si} - a_{\rm SiGe}}{a_{\rm SiGe}} = -0.0062$$

 $h_{
m cr} pprox 19.8~{
m nm}$

 $b = a_{SiGe} / \sqrt{2} = 0.39$ nm

Дислокации несоответствия на гетерогранице GaAs/CdTe Misfit dislocations at GaAs/CdTe interface

$$\varepsilon_m = -0.13$$

Atomic resolution transmission electron micrograph of an interface between CdTe and GaAs where the misfit strain is relaxed by the introduction of edge dislocations. The letters 'S' and 'F' refer to 'start' and 'finish' for the Burgers

circuit around the dislocation. The bright white spots correspond to atomic positions and the fuzzy white clusters at the interface correspond to the cores of the dislocations. After Schwartzman and Sinclair (1991).

Механизмы формирования дислокаций несоответствия в гетероэпитаксиальных системах Mechanisms of formation of misfit dislocations

- Зарождение дислокаций на поверхности и скольжение к интефейсу. Nucleation at growth surface and gliding to the interface
- Зарождение дислокаций непосредственно на интерфейсе на начальных стадиях роста. Direct formation at the interface during initial stage of growth
- Изгиб дислокаций, прорастающих из подложки. Bending of threading dislocations

Зарождение дислокаций на поверхности и скольжение к интефейсу Dislocations gliding to the interface

Зарождение дислокаций непосредственно на интерфейсе на начальных стадиях роста Dislocations in quantum dots

Bright-field cross-sectional TEM images (*Zou et al. 2002*) showing Ge island on Si: (a) coherent; (b) incoherent.

Дислокации на гетероэпитаксиальном интерфейсе GaN(0001)/GaAs(111)

Cross-sectional bright-field TEM micrographs of a GaAs/GaN hetrostructure. Vertical black arrows show the directions in the zinc blende and wurtzite lattices. A horizontal black arrow marks the location of the heterointerface. White arrows indicate nanocavities located in the GaAs layer near the interface. Chaldyshev et al. 2005

 $\varepsilon_m \approx 20\%$

Изгиб прорастающих дислокаций Bending of threading dislocations

Сила, действующая на дислокацию в напряженной пленке

$$F_{\rm m}(\eta) = \begin{cases} b_x \sigma_{\rm m} & \text{for } 0 < \eta < h_{\rm f}, \\ 0 & \text{for } h_{\rm f} < \eta < \infty. \end{cases}$$

Плотность дислокаций несоответствия Density of misfit dislocations

Приближение среднего поля. Mean field approximation

Одновременное образование системы дислокаций несоответствия. Thermodynamically preferable.

Энергия системы:

$$G(h,p)=-\left[W_{\rm d}(h,p)+W_{\rm m}(h,p)\right.$$

$$\frac{b}{4\pi h}\ln\left(\frac{2p}{\pi b}\sinh\frac{2\pi h}{p}\right) = \gamma_{\rm m}$$

Последовательное образование дислокаций несоответствия Consecutive formation

Энергия системы:

$$\begin{aligned} (h,p) &= -\left[W_{\rm d}(h,p) + W_{\rm m}(h,p) + W_{\rm a}(h,p)\right] \\ \frac{b}{\pi h} \ln \frac{4h}{b} + \frac{b}{2\pi h} \ln \left(\frac{p}{2\pi h} \sinh \frac{2\pi h}{p}\right) = \gamma_{\rm m} \end{aligned}$$

Методы понижения плотности дислокаций в структурах Reduction of dislocation density in heterostructures

- Блокирование движения дислокаций Blocking the dislocation motion
- Изгиб дислокаций в плоскость интефейса и вывод на боковые грани кристалла Bending the dislocations into interface
- Блокирование источников дислокаций Blocking the dislocation sources

Сверхрешетка как средство борьбы с прорастающими дислокациями Supelattice as a tool to block dislocations

- (а) Сверхрешетка не препятствует латеральному движению дислокаций
- (b) Сверхрешетка *препятствует* вертикальному движению дислокаций
- (с) Сверхрешетка блокирует работу источника дислокаций
- (d) Результат работы источника в отсутствии сверхрешетки

Lateral epitaxial overgrowth technique

Advantage:

Reduced density of threading dislocations

Disadvantage:

Spatial modulation of material properties: Dislocation density Residual strains Background doping

Desired result

Заключение Conclusion

- Дислокации могут быть равновесными в напряженных гетероструктурах. Dislocations can be equilibrium defects in heterostructures.
- Дислокации в гетероструктурах обеспечивают релаксацию энергии упругой деформации.
 Dislocations reduce total elastic energy in heterostructures.
- Формирование дислокаций несоответствия носит пороговый характер. Formation of dislocations has a threshold.
- Механизм формирования дислокаций в гетероструктурах зависит от величины собственных деформаций, характера их распределения, кристаллогеометрии гетероструктуры, наличия источников дислокаций и точечных дефектов. Dislocation formation mechanism depends on eigenstrain value and distribution, crystallography and geometry, presence of dislocation sources and point defects.

Домашнее задание (Homework) 7

Определить критическую толщину когерентной пленки Ge, выращиваемой на подложке Si, толщиной 400 мкм, с ориентацией (001) и соответствующий ей радиус изгиба гетероструктуры. Determine critical thickness and corresponding curvature of Ge film grown on 400 µm thick Si substrate with (001) orientation. 1.Дислокации 60-градусные 60°-dislocations: $\xi = [1,1,0], b = [0, \frac{1}{2}, \frac{1}{2}]$ 2.Дислокации краевые Edge dislocations: $\xi = [1,1,0], b = [\frac{1}{2}, -\frac{1}{2}, 0]$

Material	a_0 (Å)	$ ho \ ({ m g/cm}^3)$	c_{11} (GPa)	с ₁₂ (GPa)	c_{44} (GPa)
Silicon (Si) Germanium (Ge) Diamond (C)	5.4307 ^{5.658} 3.567	$2.330 \\ 5.323 \\ 3.515$	$165 \\ 129 \\ 1040$	$64 \\ 48 \\ 170$	$79.2 \\ 67.1 \\ 550$