Обратная задача теории аппроксимации

Дипломная работа

Осипович Анастасия Леонидовна

Научный руководитель: доктор физ.-мат. наук профессор А. А. Пекарский

Обратная задача теории аппроксимации

F — банахово пространство над полем $\mathbb R$.

 $\{x_n\}_{n=0}^{\infty}$ — замкнутая линейно независимая последовательность элементов F.

$$E_n(x) = \inf \left\{ \left\| x - \sum_{k=0}^n c_k x_k \right\| : c_0, c_1, \dots, c_n \in \mathbb{R} \right\}$$

-n-е наилучшее полиномиальное приближение элемента $\chi \in F$

$$Y_0 := Y \cup \{0\}.$$

Обратная задача теории аппроксимации

Теорема 1.1 (С.Н. Бернштейн). Для всякой невозрастающей бесконечно малой последовательности чисел

$$a_0 \ge a_1 \ge a_2 \ge \dots \ge a_n \ge \dots$$
, $\lim_{n \to \infty} a_n = 0$

найдётся элемент $x \in F$ такой, что $E_n(x) = a_n$ при любом $n \in \mathbb{N}_0$.

Существование функции, непрерывной на отрезке, с заданными наилучшими равномерными рациональными приближениями

 $C \coloneqq C[-1,1] -$ банахово пространство непрерывных функций на отрезке [-1,1], $\|f\|_C = \max\{|f(x)|: x \in [-1, 1]\}.$

 \mathcal{R}_n — множество всех алгебраических рациональных функций r_n , над полем \mathbb{R} или \mathbb{C} , степени не выше n, таких что $r_n = \frac{p_n}{q_n}$, где p_n и $q_n \in \mathcal{P}_n$.

 $R_n(f,C) = \inf \{ \|f - r\|_C \mid r \in \mathcal{R}_n \}$ — наилучшее рациональное приближение функции $f \in C[-1,1]$.

Существование функции, непрерывной на отрезке, с заданными наилучшими равномерными рациональными приближениями

Теорема 2.1 (А.А. Пекарский). Для любой строго убывающей к нулю последовательности $\{a_n\}_{n=0}^{\infty}$ существует комплексная функция $g \in C$ такая, что $R_n(g,C) = a_n$ при n = 0,1,2,...

Существование функции с заданными наилучшими рациональными приближениями в пространстве \mathcal{C}_A

 C_A — пространство функций, аналитических в круге |z| < 1 и непрерывных в его замыкании.

$$R_n(f, C_A) = \inf \{ \|f - r\|_{C_A} \mid r \in \mathcal{R}_n \}$$
 — наилучшее рациональное приближение функции $f \in C_A$.

$$||f||_{C_A} = max\{|f(z)|: |z| \le 1\}$$

Существование функции с заданными наилучшими рациональными приближениями в пространстве \mathcal{C}_A

Теорема 3.1 (М.А. Назаренко). Пусть последовательность $\{a_n\}_{n=0}^{\infty}$ удовлетворяет одному из следующих условий: а) Строго убывает к нулю; b) Существует $N \in \mathbb{N}_0$ такое, что $a_0 > a_1 > ... > a_N > 0$ и $a_n = 0$ при всех $n \geq N+1$. Тогда существует $f \in C_A$ такая, что $R_n(f, C_A) = a_n$ при n=0,1,2,...

Результаты о сравнении наилучших равномерных полиномиальных и рациональных приближений

Теорема 4.1(В. Воет) Если $f \in C[-1,1]$ и $R_n(f,C) = E_n(f,C)$ для всех n=0,1,2,..., то существуют такие $a,b \in \mathbb{R}$ и $n_0 \in \mathbb{N}_0$, что $f(x)=aT_{n_0}(x)+b$ при $x \in [-1,1]$, где $T_{n_0}(x)-$ многочлен П. Л. Чебышева I рода степени n_0 .

Результаты о сравнении наилучших равномерных полиномиальных и рациональных приближений

Теорема 4.2 (А.А. Пекарский). Для любой невозрастающей бесконечно малой $\{a_n\}_{n=0}^{\infty}$ последовательности существует функция $f_1 \in C[-1,1]$ для которой

$$R_{2^{k}-1}(f_1) = E_{2^{k-1}}(f_1) = a_{2^{k}-1}, \quad k = 0, 1, 2, \dots$$

Спасибо за внимание!