Семинар 1. Основные понятия теории колебаний

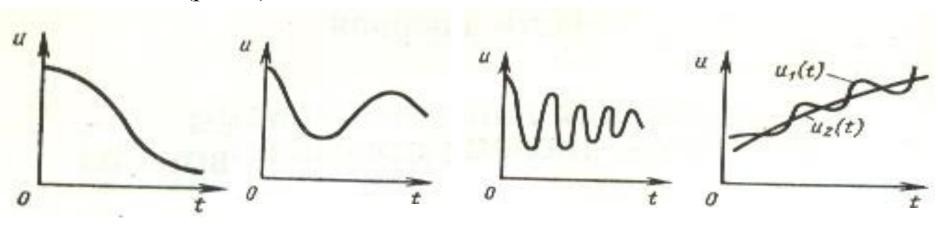
1.1. Понятия о колебаниях

Пусть состояние системы в каждый момент времени дописывается некоторым набором параметров.

Возьмем один из числовых параметров системы \boldsymbol{u} .

Рассмотрим изменение этого параметра во времени t.

Это изменение может быть монотонным, немонотонным, существенно немонотонным (рис. 1).



Pис. 1. Изменение параметра u(t):

а) монотонное

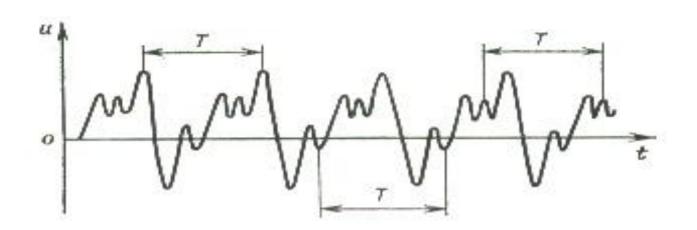
- б) немонотонное
- в, г) существенно немонотонное

1.4. Кинематические характеристики периодических колебательных процессов

Пусть процесс характеризуется одной скалярной переменной u(t) (например, nepemeuenue).

Периодические колебания. Колебания называются периодическими, если любые значения колеблющейся величины повторяются через равные отрезки времени. .

Более точно, колебания называются периодическими, если существует такое число T, что для любого t выполняется условие (рис. 2) u(t+T) = u(t). Наименьшее из этих значений называется *периодом колебаний*.



Обозначим его через T. Величина, обратная периоду колебаний, называется частотой колебаний: f = 1/T.

В технике период колебаний обычно измеряется \emph{e} секундах; частота \emph{f} , следовательно, имеет размерность $\emph{1/c}$ (\emph{c}^{-1})

В теоретические формулы входит величина, называемая *угловой* (*циклической*) *частомой*

$$\omega = 2\pi f = \frac{2\pi}{T} \quad (3)$$

Она также измеряется в c^{-1} . Эта частота равна числу периодов колебаний, которые укладываются на отрезке времени продолжительностью 2π с.

Необходимо остерегаться смешения частот f и \wp

Частоту f обычно измеряют в герцах (Гц).

Для угловой частоты наряду с размерностью c^{-1} часто используют размерность pad/c.

Гармонические колебания. Простейшим (и наиболее важным) видом периодических колебаний являются гармонические (синусоидальные) колебания, при которых колеблющаяся величина изменяется во времени по закону

$$u(t) = A\sin(\omega t + \varphi) \quad (4)$$

 A, ω, φ постоянные параметры.

Параметр A равен наибольшему значению колеблющейся величины и называется aмплитудой.

фазывается начальной фазой колебаний.

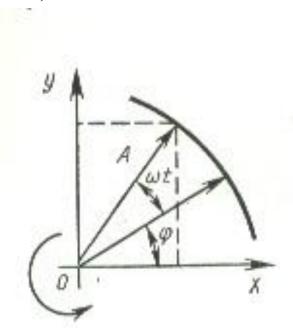
 $\omega\,t+\phi_{
m Ha3bBaetcs}$ фaзой колебаний в момент времени t .

мэляется угловой частотой.

Период гармонических колебаний выражается через угловую частоту:

$$T = \frac{2\pi}{\omega} \quad (5)$$

Для наглядного представления гармонических колебаний можно использовать круговую диаграмму (рис. 3).



Для этого на плоскости вводится вектор длиной A, который вращается с постоянной угловой скоростью, равной ω

Начальное положение вектора задается углом . ϕ

Проектируя конец вектора на вертикальную ось, получим закон движения в форме (4).

Скорость при гармонических колебаниях

$$v = \frac{du}{dt} = \omega A \cos(\omega t + \varphi) \quad (6)$$

а ускорение

$$w = \frac{d^2u}{dt^2} = -\omega^2 A \sin(\omega t + \varphi) \quad (7)$$

Скорость v(t) и ускорение w(t) при гармонических колебаниях также изменяются во времени по синусоидальному закону с той же частотой, что и перемещение u(t).

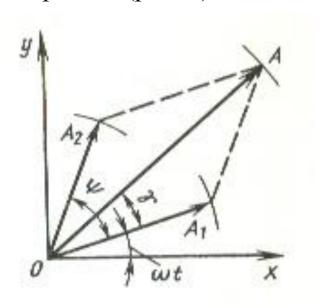
Амплитуды скорости и ускорения равны соответственно ωA u $\omega^2 A$

В технической литературе перемещение, скорость и ускорение при колебательном движении называют соответственно виброперемещением, виброскоростью и виброускорением.

Сумма двух гармонических колебаний с одинаковыми частотами будет гармоническим колебанием с той же частотой:

$$A_1 \cos \omega t + A_2 \cos(\omega t + \psi) = A \cos(\omega t + \gamma) \quad (8)$$

Амплитуда и фаза результирующих колебаний могут быть найдены, например, из круговой диаграммы (рис. 4):



$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\psi} \; ;$$

$$tg\gamma = \frac{A_2 \sin \psi}{A_1 + A_2 \cos \psi} \tag{9}$$

Полигармонические колебания. Полигармоническими называют колебания, которые могут быть представлены в виде суммы двух или более гармонических колебаний с частотами (периодами), находящимися между собой в рациональном соотношении.

Пример: колебательный процесс, являющийся суммой двух гармонических процессов

$$u(t) = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t \quad (10)$$

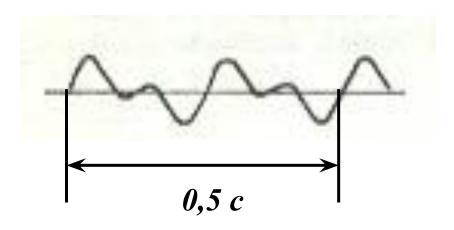
Существенно, чтобы отношение частот было рациональным числом.

Пусть $\omega_1 = m\omega$, $\omega_2 = n\omega$ выражаются через некоторую частоту ω , где m и n - целые числа, причем m/n - несократимая дробь.

Тогда сумма (10) будет периодической функцией с периодом $2\pi/\omega$

Примеры полигармонических колебаний.

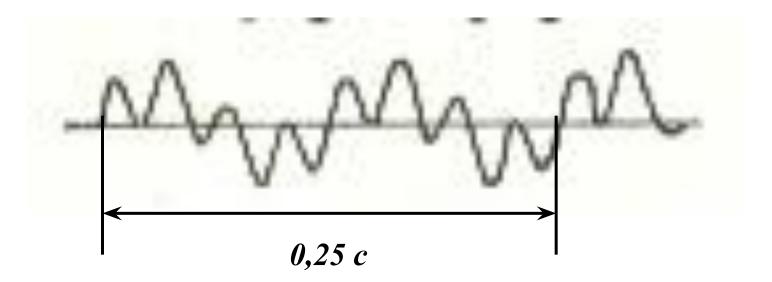
$$u(t) = A_1 \cos m\omega t + A_2 \cos n\omega t \quad (10)$$



$$m = 1$$
 $n = 2$

$$f_1 = 4$$
 Γu
 $f_2 = 8$ Γu

$$u(t) = A_1 \cos m\omega t + A_2 \cos n\omega t \quad (10)$$

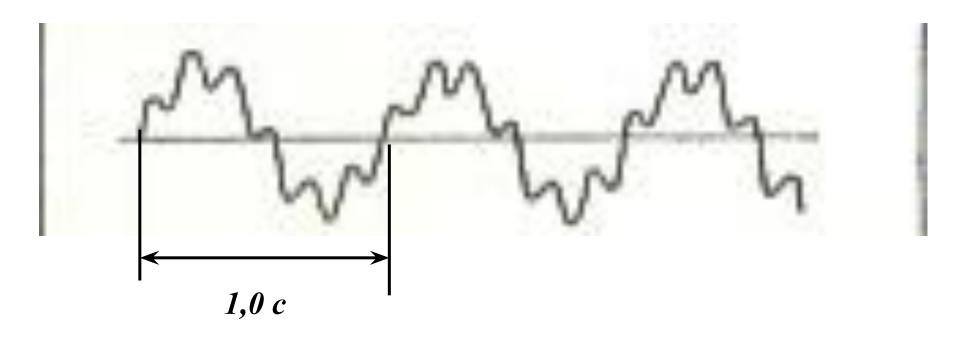


$$m = 1$$
 $n = 4$

$$f_1 = 8 \qquad \Gamma u$$

$$f_2 = 32 \qquad \Gamma u$$

$$u(t) = A_1 \cos m\omega t + A_2 \cos n\omega t \quad (10)$$



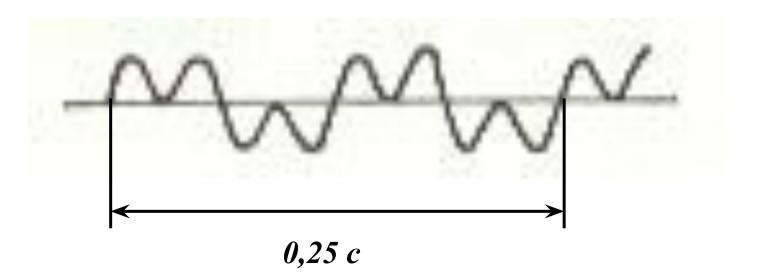
$$m = 1$$
 $n = 6$

$$f_1 = 1 \qquad \Gamma u$$

$$f_2 = 6 \qquad \Gamma u$$

Пример 4

$$u(t) = A_1 \cos m\omega t + A_2 \cos n\omega t \quad (10)$$

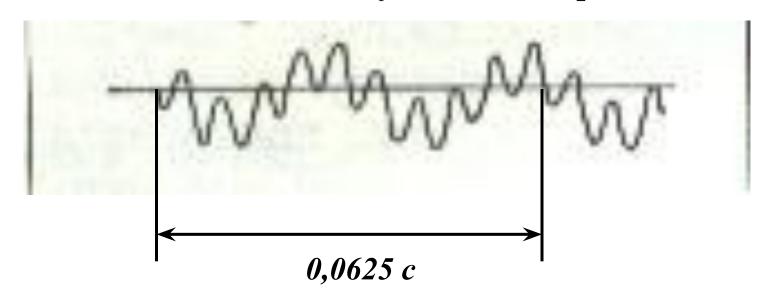


$$m = 1$$

$$n = 3$$

$$f_1 = 8$$
 Γu
 $f_2 = 24$ Γu

$$u(t) = A_1 \cos m\omega t + A_2 \cos n\omega t \quad (10)$$



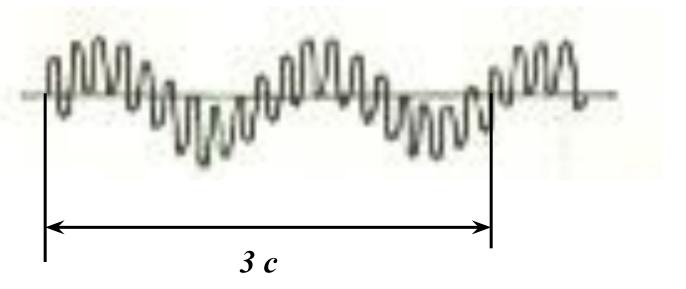
$$m = 1$$

$$n = 5$$

$$f_1 = 32 \quad \Gamma u$$

$$f_2 = 160 \quad \Gamma u$$

$$u(t) = A_1 \cos m\omega t + A_2 \cos n\omega t \quad (10)$$



$$m = 1$$
 $n = 10$

$$f_1 = 0.67$$
 Γu
 $f_2 = 6.7$ Γu