
1

Using Microcontrollers in Amateur Radio, an AZ EL
Controller Application

A Presentation For The Southwest Ohio Digital Symposium

Presented by Bill Erwin – N9CX January 10, 2009

Things I Hope To Leave You With

■ Share my experience with the rotor controller project
❑ Explain why I made the choices I did
❑ How it works
❑ Status of the project

■ But more than that:
❑ Why a microcontroller was a good choice for this project
❑ What software development environments are all about
❑ Tempt you to consider experimenting with microcontrollers

2

Feel free to ask questions at any time !

3

Motivation For This Project

■ Developed an interest in LEO (Low Earth Orbit) satellites
❑ Led to an interest in a better antenna system
❑ Wanted to track LEOs with small beam antennas

■ Commercial rotors & controllers are available
❑ Didn’t want to commit that much money at this stage of interest

■ Decided to use inexpensive rotors & build my own
controller

4

Low Earth Orbit Satellites

■ Basically LEOs are orbital repeaters
■ AMSAT has a lot of information on the WEB
■ LEOs offer some special challenges
❑ They move fast.
❑ Short contacts
❑ Low RF power

5

LEO Satellites Vary In Both Size & Complexity

AO-51 (Echo)
 ~800 km orbit
 voice repeater
 PakSat BBS
 PSK31 Digital

SuitSat-1 (AO-54)
 Russian space suit
 Launched from ARISS ~355 km
 telemetry only
 temp & battery

N-Cube2
10x10x10 CM
I LITER VOLUME
(University Projects)

~690 km orbit

6

Satellite QSOs Are Interesting!

■ There are a lot of “things” involved in working the LEO
satellites!
❑ Computer screen
❑ Keyboard
❑ Mouse
❑ Downlink frequency
❑ Uplink frequency
❑ Doppler effects
❑ Code paddles or a microphone
❑ Azimuth of the satellite
❑ Elevation of the satellite

7

So Many things – So Little Time!

■ The window for a QSO is often less than 8 minutes.
■ If you can automate a few “things”, your QSOs may have

more “talk” time.
■ This project is about automating the rotors for directional

azimuth & elevation antennas.

8

My Approach To The Project

■ Research the WEB for similar projects
■ Evaluate what I might do that is different
■ Understand how rotors work
■ Keep it (relatively) cheap
■ Breadboard parts of the design to verify critical

assumptions

■ Rotor controller needs an LCD display & flashing LEDs!

Why Use A Microcontroller Anyway?

9

10

Choices To Make

■ Features
■ Rotors
■ Software Development tools & Environment
■ Microcontroller

Desirable Features

■ Work with the Nova tracking software
■ Have 2 main modes: “manual” & “autotrack”
■ Self-calibrate to any Pulser type rotor
■ Remember antenna position during powerdown.
■ Reliable beam positioning – within 5 degrees.
■ Easy to update the controller software.
■ Minimize cost

11

12

The Rotor – You must understand the thing you are trying to control!

The Alliance U100

13

Yes – You Can Stack Them

Azimuth

Elevation

The ability to put a pipe through
 the rotor body is fairly unique.

14

Anatomy Of A U100 Rotor #2

15

Anatomy Of A U100 Rotor #3

Physical stop tab

Pulser Cam

16

Anatomy Of A U100 Rotor #4

Motor shaft Gear

Pulsing contact

Motor Frame
Mechanical Stop

Commercial Controller for the U100 Rotor

17

10 degree graduations on the dial

18

The Original U100 Rotor Schematic Diagram

Rotor

Control Box

Simply replace this with a Microcontroller System

19

Model of the U100 Rotor

+

-

360/ 0 Deg.

180

90270

2. tics/deg = tics/pulse / deg/pulse
1. deg/pulse = 360 Deg/# pulse (counted)

Strategy
1. Do an initial calibration to detect

rotor’s pulse characteristics.
2. Absolute direction is known at each

pulse & at rotor physical stops.
3. Time between pulses to estimate

position of rotor to a finer degree of
resolution.

4. Time between pulses to detect rotor
limit or problems.

Total feedback from the rotor

Note – A “tic” is 5 milliseconds

Calibration Mode calculates:

3. Use physical stops as a reference

physical stop

~ 100 MS
// //

Block Diagram Of the Rotor Controller

20

Front Panel Switches

Front Panel LEDs

SS relays and
Phasing capacitors
15 vac

SS relays
Phasing capacitors
15 vac

CW

CCW

Common AZ Rotor

Pulsing ContactOpto isolator

Pulsing ContactOpto isolator

down

up

Common EL Rotor

5 Volt regulator
MAX 232 chip
Ceramic resonator
Etc.

Support circuitry

Front Panel LCD

A
T
M
E
G
A
1
6

Note - This diagram does not indicate pin assignments

A FEW OF THE ATMEGA 16 FEATURES
■ THE DATA SHEET IS 358 PAGES !
■ – 32 x 8 General Purpose Working Registers
■ – Up to 16 MIPS Throughput at 16 MHz
■ – 16K Bytes of In-System Self-programmable Flash program memory
■ – 512 Bytes EEPROM
■ – 1K Byte Internal SRAM
■ – Two 8-bit Timer/Counters with Prescalers
■ – One 16-bit Timer/Counter with Prescaler
■ – Real Time Counter with Separate Oscillator
■ – Four PWM Channels
■ – 8-channel, 10-bit ADC
■ – Byte-oriented Two-wire Serial Interface
■ – Programmable Serial USART
■ – Master/Slave SPI Interface
■ – 32 Programmable I/O Lines
■ YOU CAN NOT USE ALL AT SAME TIME – SHARE I/O PINS

21

Microcontroller – Atmel Atmega16

22

YOU GET A LOT OF FUNCTIONALITY IN A SINGLE PACKAGE

Microcontroller – Save Time By Buying a Proto board

23

I use this development board for almost all
of my projects.

Saves a lot of soldering and cost about $17.00

I get it from “Spark Fun”.

24

Partial Schematic of the Rotor Controller System – Rotor interfaces

30 VCT xfmr

Solid State Relays
(opto isolated)

Micro Controller's power supply (+5 vdc)

OO1 2

X

(|
<

<

VCC

~20 VDC
Current source for
LCD Backlight

O

O O

O

1 2

3 4

X
|()|

<

x
O3 x

)|

U100rotor

To micro controller common

Rotor common

Current limit resistor

JGC-5F X JGC-5F

R3

AZ –CW PA0 (pin1) AZ –CCW PA0 (pin 2)

JGC-5F

15 VAC

15 VAC

X Front panel AZ Pulse LED

\/\
/\/

\

To I/O port pin

R
1

AZ – PD6 (pin20)

X

3

O

O
O

O

XJGC-5F

AZ Rotor

110 VAC

\/\/\/\ R
2

EL – PD7 (pin21)

To micro controller common

U100 EL Rotor

To I/O port pin

Front panel EL Pulse LED

1

4

2

X

4N25

4N25

470 2W

2K

2K

VCC

EL –UP PA2 (38)EL–DOWN PA3 (pin37)

|()|

Front Panel Switches – Interface to the Microcontroller

■ Micro Controller Port assignments (Active low)
❑ Port A Pin 0 - Azimuth ClockWise (CW)
❑ Port A Pin 1 - Azimuth Counter ClockWise (CCW)
❑ Port A Pin 2 - Elevation Up
❑ Port A Pin 3 - Elevation Down
❑ Port A Pin 4 - Calibrate momentary pushbutton
❑ Port A Pin 5 - Auto Track momentary pushbutton
❑ Port A Pin 6 - Azimuth Pulse input
❑ Port A Pin 7 - Elevation Pulse input

■ LCD Port assignments (4 bit data interface)
❑ Details are in a header file

25

26

Development Environment

Rotor control cable

Debug data Serial port

Program flash memory
 using “avrdude” utility

Fedora Core 7 GNU/LINUX
With AVR-GCC tool chain

Windows – running NOVA

Novacomm1 protocol

Write/debug source code

27

Features On My Rotor Control Box

2X16 BACKLIGHTED LCD

SPST

N.O. Pushbutton

N.O. Pushbutton

ON-OFF-ON

ON-OFF-ON
Indicates rotor pulse

Manual Mode - AZ & EL Reading

28

Auto track mode – tracking AO-10 satellite

29

The Rotor Teststand

30

31

A Look Under The Hood

Rotor power

Controller Board

Xfmr for controller board

Phasing caps/SS relay boards

Rotor wires plug
In here.

Programming header

Serial in from PC
Serial out for debug

PWR cord connector

Fuse holder

Front Panel

32

A Few Software Statistics

■ ATMEGA 16 Controller
❑ 16KBytes Flash (Program) memory
❑ 512 Bytes of EEPROM
❑ 1 K SRAM

■ Software Sizes
❑ Program 13394 Bytes
❑ Data 262 Bytes – Initialized read only data
❑ BSS 399 Bytes – initialized read/write data
❑ Total 13995 Bytes

■ 30 source files
❑ All source is written in “C”

■ AVR-GCC Tool Chain programs

High Level Software Design

■ BACKGROUND processing every 5 milliseconds
❑ Watch every switch in the system

■ Monitor & debounce every switch in the controller
■ Advertise debounced state to the FOREGROUND processing

❑ Maintain software timers
■ Decrement every interrupt (5 ms)

■ FOREGROUND processing
❑ Manage a simple “state machine” based on operating modes:

■ Calibrate
■ Initialize
■ Manual
■ Auto

❑ Manages the front panel LCD display & LEDs
❑ Fault detection/recovery strategy

33

Field Day 2008 Satellite Antenna Setup

34

Performance Of The Controller

■ Used successfully in last two Field Days
■ Sensitive to drag on the beams – coax

❑ False detection of physical stop or obstruction
■ Dressing the coax better resolved this
■ Have changed “late pulse” detection parameters

■ Be sure the beams are oriented properly before raising
the mast <Hi Hi>

■ I consider it a success but it has not seen extensive use

35

36

Things Left Undone

■ Need to get a better schematic in electronic form
❑ Scattered around in a notebook now

■ Finish the front panel
❑ Print another front panel template and put plastic over it

■ Need to paint the box
■ Understand other Pulser rotors better (AR-22)

❑ Mainly for azimuth rotor use
❑ Motor power requirements may not be compatible

■ Adapt to “Potentiometer” type rotors - Perhaps
❑ Made some accommodations, but didn’t finish this

■ A few things in the software to clean-up

37

Closing Thoughts About Antenna Rotors
■ Pulsers have many issues to consider

❑ Resolution - must interpolate
❑ Calibration process
❑ Must have persistent memory (power-down) for AZ & EL position
❑ Can find them reasonably priced at hamfests

■ Potentiometer type rotors seem less complicated
❑ Always know where the rotor is
❑ No persistent memory required for power-down
❑ No interpolation required
❑ No directional history needed
❑ Less opportunity to get out of sync.
❑ Nova tracking software may do most of the work for you
❑ But – these rotors may be expensive!

FROM A SOFTWARE PERSPECTIVE

■ This was an interesting microcontroller project!
■ Microcontrollers can be used for a lot of amateur radio projects!
■ If you are patient and persistent you will be successful!

38

