# Using Microcontrollers in Amateur Radio, an AZ EL Controller Application

A Presentation For The Southwest Ohio Digital Symposium

Presented by Bill Erwin – N9CX January 10, 2009

## Things I Hope To Leave You With

- Share my experience with the rotor controller project
  - Explain why I made the choices I did
  - How it works
  - Status of the project
- But more than that:
  - Why a microcontroller was a good choice for this project
  - What software development environments are all about
  - Tempt you to consider experimenting with microcontrollers

Feel free to ask questions at any time!

### Motivation For This Project

- Developed an interest in LEO (Low Earth Orbit) satellites
  - Led to an interest in a better antenna system
  - Wanted to track LEOs with small beam antennas
- Commercial rotors & controllers are available
  - Didn't want to commit that much money at this stage of interest
- Decided to use inexpensive rotors & build my own controller

#### Low Earth Orbit Satellites

- Basically LEOs are orbital repeaters
- AMSAT has a lot of information on the WEB
- LEOs offer some special challenges
  - They move fast.
  - Short contacts
  - Low RF power

## LEO Satellites Vary In Both Size & Complexity







AO-51 (Echo)
~800 km orbit
voice repeater
PakSat BBS
PSK31 Digital

SuitSat-1 (AO-54)

Russian space suit

Launched from ARISS ~355 km

telemetry only

temp & battery

N-Cube2 10x10x10 CM I LITER VOLUME (University Projects)

~690 km orbit

## Satellite QSOs Are Interesting!

- There are a lot of "things" involved in working the LEO satellites!
  - Computer screen
  - Keyboard
  - Mouse
  - Downlink frequency
  - Uplink frequency
  - Doppler effects
  - Code paddles or a microphone
  - Azimuth of the satellite
  - Elevation of the satellite

## So Many things – So Little Time!

- The window for a QSO is often less than 8 minutes.
- If you can automate a few "things", your QSOs may have more "talk" time.
- This project is about automating the rotors for directional azimuth & elevation antennas.

### My Approach To The Project

- Research the WEB for similar projects
- Evaluate what I might do that is different
- Understand how rotors work
- Keep it (relatively) cheap
- Breadboard parts of the design to verify critical assumptions
- Rotor controller needs an LCD display & flashing LEDs!

## Why Use A Microcontroller Anyway?



## Choices To Make

- Features
- Rotors
- Software Development tools & Environment
- Microcontroller

#### Desirable Features

- Work with the Nova tracking software
- Have 2 main modes: "manual" & "autotrack"
- Self-calibrate to any Pulser type rotor
- Remember antenna position during powerdown.
- Reliable beam positioning within 5 degrees.
- Easy to update the controller software.
- Minimize cost

#### The Rotor – You must understand the thing you are trying to control!

The Alliance U100



## Yes – You Can Stack Them

The ability to put a pipe through the rotor body is fairly unique.



#### Anatomy Of A U100 Rotor #2



#### Anatomy Of A U100 Rotor #3



#### Anatomy Of A U100 Rotor #4



#### Commercial Controller for the U100 Rotor

10 degree graduations on the dial



#### The Original U100 Rotor Schematic Diagram



#### Model of the U100 Rotor



## Block Diagram Of the Rotor Controller



Note - This diagram does not indicate pin assignments

#### A FEW OF THE ATMEGA 16 FEATURES

- THE DATA SHEET IS 358 PAGES!
- 32 x 8 General Purpose Working Registers
- Up to 16 MIPS Throughput at 16 MHz
- 16K Bytes of In-System Self-programmable Flash program memory
- 512 Bytes EEPROM
- 1K Byte Internal SRAM
- Two 8-bit Timer/Counters with Prescalers
- One 16-bit Timer/Counter with Prescaler
- Real Time Counter with Separate Oscillator
- Four PWM Channels
- 8-channel, 10-bit ADC
- Byte-oriented Two-wire Serial Interface
- Programmable Serial USART
- Master/Slave SPI Interface
- 32 Programmable I/O Lines
- YOU CAN NOT USE ALL AT SAME TIME SHARE I/O PINS

## Microcontroller – Atmel Atmega16





YOU GET A LOT OF FUNCTIONALITY IN A SINGLE PACKAGE

## Microcontroller – Save Time By Buying a Proto board

I use this development board for almost all of my projects.

Saves a lot of soldering and cost about \$17.00

I get it from "Spark Fun".



#### Partial Schematic of the Rotor Controller System – Rotor interfaces



#### Front Panel Switches – Interface to the Microcontroller

- Micro Controller Port assignments (Active low)
  - Port A Pin 0 Azimuth ClockWise (CW)
  - Port A Pin 1 Azimuth Counter ClockWise (CCW)
  - Port A Pin 2 Elevation Up
  - Port A Pin 3 Elevation Down
  - Port A Pin 4 Calibrate momentary pushbutton
  - Port A Pin 5 Auto Track momentary pushbutton
  - Port A Pin 6 Azimuth Pulse input
  - Port A Pin 7 Elevation Pulse input
- LCD Port assignments (4 bit data interface)
  - Details are in a header file

## Development Environment

Fedora Core 7 GNU/LINUX With AVR-GCC tool chain





Rotor control cable



Novacomm1 protocol

Windows – running NOVA

## Features On My Rotor Control Box



## Manual Mode - AZ & EL Reading



## Auto track mode – tracking AO-10 satellite



## The Rotor Teststand



#### A Look Under The Hood



#### A Few Software Statistics

- ATMEGA 16 Controller
  - 16KBytes Flash (Program) memory
  - 512 Bytes of EEPROM
  - 1 K SRAM
- Software Sizes
  - Program 13394 Bytes
  - Data
     262 Bytes Initialized read only data
  - □ BSS 399 Bytes initialized read/write data
  - □ Total 13995 Bytes
- 30 source files
  - All source is written in "C"
- AVR-GCC Tool Chain programs

## High Level Software Design

#### BACKGROUND processing every 5 milliseconds

- Watch every switch in the system
  - Monitor & debounce every switch in the controller
  - Advertise debounced state to the FOREGROUND processing
- Maintain software timers
  - Decrement every interrupt (5 ms)

#### FOREGROUND processing

- Manage a simple "state machine" based on operating modes:
  - Calibrate
  - Initialize
  - Manual
  - Auto
- Manages the front panel LCD display & LEDs
- Fault detection/recovery strategy

## Field Day 2008 Satellite Antenna Setup



#### Performance Of The Controller

- Used successfully in last two Field Days
- Sensitive to drag on the beams coax
  - False detection of physical stop or obstruction
    - Dressing the coax better resolved this
    - Have changed "late pulse" detection parameters
- Be sure the beams are oriented properly before raising the mast <Hi Hi>
- I consider it a success but it has not seen extensive use

## Things Left Undone

- Need to get a better schematic in electronic form
  - Scattered around in a notebook now
- Finish the front panel
  - Print another front panel template and put plastic over it
- Need to paint the box
- Understand other Pulser rotors better (AR-22)
  - Mainly for azimuth rotor use
  - Motor power requirements may not be compatible
- Adapt to "Potentiometer" type rotors Perhaps
  - Made some accommodations, but didn't finish this
- A few things in the software to clean-up

### Closing Thoughts About Antenna Rotors

- Pulsers have many issues to consider
  - Resolution must interpolate
  - Calibration process
  - Must have persistent memory (power-down) for AZ & EL position
  - Can find them reasonably priced at hamfests
- Potentiometer type rotors seem less complicated
  - Always know where the rotor is
  - No persistent memory required for power-down
  - No interpolation required
  - No directional history needed
  - Less opportunity to get out of sync.
  - Nova tracking software may do most of the work for you
  - But these rotors may be expensive!

#### FROM A SOFTWARE PERSPECTIVE

- This was an interesting microcontroller project!
- Microcontrollers can be used for a lot of amateur radio projects!
- If you are patient and persistent you will be successful!