ЭЛЕКТРОМАГНЕТИЗМ

Лекция «Электрическое поле в веществе»

Классификация веществ по величине электропроводности

Проводники

Полупроводники

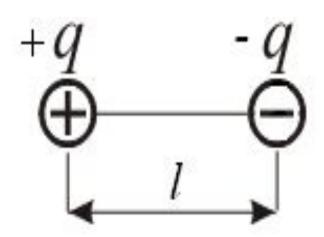
Диэлектрики

обладают высокой электропроводностью $(\sigma = 10^4 - 10^6 \, \text{Om}^{-1} \cdot \text{m}^{-1})$

обладают **промежуточной** электропроводностью $(\sigma = 10^{-10} - 10^4 \, \text{Om}^{-1} \cdot \text{m}^{-1})$

обладают **низкой** электропроводностью $(\sigma = 10^{-20} - 10^{-10} \, \text{Om}^{-1} \cdot \text{M}^{-1})$

являются **проводниками** электрического тока


проводимость имеет активационный характер (зависит от различных факторов) являются электрическими **изоляторами**

Типичные представители - металлы и металлические сплавы

Типичные представители - элементы IV и VI групп таблицы Менделеева и соединения A^3B^5 и A^2B^6

Типичные представители - дерево, резина, слюда, полиэтилен, алмаз

Электрический диполь

$$\vec{p} = q\vec{l}$$

q - заряд ядра молекулы;

- \vec{l} вектор, проведенный из «центра тяжести» электронов в «центр тяжести» положительных зарядов атомных ядер (l называют плечом электрического диполя);
- $ec{p}$ электрический дипольный момент.

Электрический диполь - молекула диэлектрика - **электрически нейтрален**, т.к. суммарный заряд (+q и -q) равен нулю.

Основные типы диэлектриков

Неполярные

Центры тяжести отрицательных и положительных зарядов **совпадают** (*I* = 0), поэтому собственный дипольный момент:

$$\vec{p} = q\vec{l} = 0$$

Суммарный дипольный момент в отсутствие внешнего электрического поля $\sum\nolimits_{i=1}^{n}\vec{p}_{i}=0$

т.к.
$$p_i = 0$$

Типичные представители: H_2 , O_2 , N_2

Полярные

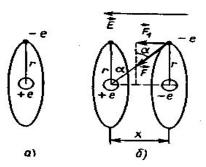
Центры тяжести отрицательных и положительных зарядов **не совпадают** (*I* ≠ 0), поэтому собственный дипольный момент:

$$\vec{p} = q\vec{l} \neq 0$$

Суммарный дипольный момент в отсутствие внешнего электрического поля

$$\sum\nolimits_{i=1}^{n}\vec{p}_{i}=0$$

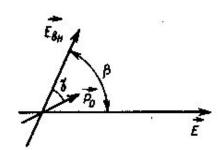
т.к. молекулы ориентированы хаотично


Типичные представители: H_2 O, HCI, спирты

Поляризация диэлектриков

Электронная

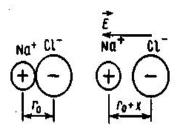
поляризация



Водородоподобный атом:

- а) в отсутствии внешнего поля;
- б) во внешнем электрическом поле.

Ориентационная


поляризация

Упругий поворот диполя P_0 во внешнем электрическом поле напряженностью Е.

Ионная

поляризация

Молекула NaCl:

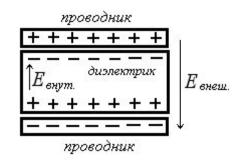
- а) в отсутствии внешнего поля;
- б) во внешнем электрическом поле.

Поляризованность диэлектрика

$$\vec{P} = \frac{\sum_{i=1}^{n} \vec{p}_{i}}{\Delta V},$$

$$\vec{P} = \mathbf{x} \boldsymbol{\varepsilon}_0 \vec{E}$$

Поляризованность - количественная мера поляризации диэлектрика.


Вектор поляризованности диэлектрика равен дипольному моменту единицы объема поляризованного диэлектрика.

- диэлектрическая восприимчивость, безразмерная величина, которая для вакуума и, практически, для воздуха равна нулю;
- ϵ_{0} электрическая постоянная;
- Е напряженность электрического поля.

Единица измерения поляризованности Р в СИ - Кл / м².

Напряженность поля в диэлектрике

При внесении диэлектрика в электрическое поле напряженностью $\mathsf{E}_{\mathtt{внеш.}} = \mathsf{E}_0$ происходит поляризация, в результате которой возникает поле связанных зарядов $\mathsf{E}_{\mathtt{внут.}}$

Связанный суммарный электрический заряд не равен нулю только на поверхности диэлектрика.

Такие заряды называют поляризационными.

$$E = \frac{E_0}{1+\chi} = \frac{E_0}{\varepsilon}$$

Электрическое поле в веществе ослабляется в ε раз по сравнению с электрическим полем в вакууме.

$$\varepsilon = 1 + a$$

ε - относительная диэлектрическая проницаемость вещества или среды, ε=1 для вакуума и, практически, для воздуха.

Связь векторов смещения, напряженности и поляризованности

$$\varepsilon_0 \vec{E} + \vec{P} = \vec{D}$$

 \vec{D} - вектор электрического смещения или вектор электрической индукции, измеряется как и \vec{P} в Кл / м²

Учитывая, что
$$\vec{P}=\chi\varepsilon_{_0}\vec{E}$$
 , получаем $\vec{D}=\varepsilon_{_0}\vec{E}+\varepsilon_{_0}\vec{E}=\varepsilon_{_0}(1+\varepsilon)\vec{E}=\varepsilon_{_0}\varepsilon\vec{E}$

Линии вектора \vec{D} могут начинаться или заканчиваться лишь **на свободных** электрических зарядах, а линии вектора напряженности \vec{E} - **на свободных и связанных** электрических зарядах.

$$\oint_{S} \overrightarrow{D} d\overrightarrow{S} = \sum_{i=1}^{n} q_{iCBOE} = Q_{iCBOE},$$

поток вектора электрического смещения через произвольную замкнутую поверхность S равен алгебраической сумме свободных электрических зарядов, охватываемых этой поверхностью.

Взаимодействие электрических зарядов в веществе

1. Закон Кулона:

$$F = k \cdot \frac{|q_1| \cdot |q_2|}{\varepsilon \cdot r_{12}^2}$$

2. Напряженность электрического поля точечного заряда q в диэлектрике:

$$E = \frac{1}{4\pi\varepsilon_0} \cdot \frac{|q|}{\varepsilon r^2}$$

3. Потенциал электрического поля точечного заряда q в диэлектрике:

$$E = \frac{1}{4\pi\varepsilon_0} \cdot \frac{|q|}{\varepsilon r}$$

4. Напряженность электрического поля заряженной плоскости в диэлектрике:

$$E = \frac{\sigma}{2 \varepsilon_0 \varepsilon}$$

Взаимодействие электрических зарядов в веществе

5. Напряженность электрического поля между разноименно заряженными пластинами:

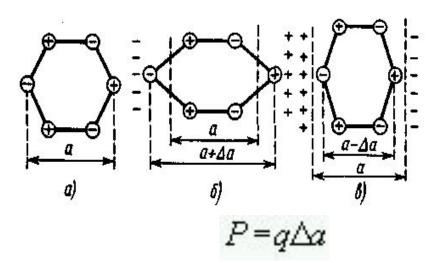
$$E = \frac{\sigma}{\varepsilon_0 \varepsilon}$$

6. Напряженность электрического поля заряженного цилиндра в диэлектрике:

$$E = \frac{\tau}{2\pi\varepsilon_0 \varepsilon r^2}$$

7. Напряженность электрического поля заряженного шара в диэлектрике:

$$E = \frac{q}{4\pi\varepsilon_0 \varepsilon r^2}$$


8. Напряженность электрического поля в диэлектрике в ε раз меньше, чем в вакууме:

$$E_{\text{диэл.}} = \frac{E_{\textit{вак.}}}{\mathcal{E}}$$

r,

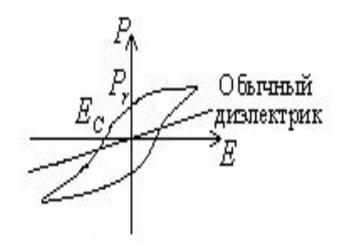
Пьезоэлектрики

Пьезополяризация - *вынужденная* поляризация в диэлектриках с нецентросимметричной структурой, при которой дипольный момент возникает **под действием механических напряжений**.

Механизм возникновения пьезополяризации в кварце:

- а) элементарная ячейка при отсутствии внешних воздействий;
- б) ячейка растянута;
- в) ячейка сжата.

Прямой пьезоэффект - появление поляризации под действием механических напряжений.


Обратный пьезоэффект заключается в том, что при наложении внешнего электрического поля кристалл несколько сжимается или расширяется.

Сегнетоэлектрики

Сегнетоэлектрики - особый класс диэлектриков, отличительными свойствами которых являются:

- **диэлектрическая проницаемость** ε этих веществ может достигать **нескольких тысяч** (у воды ε=81);
- зависимость Р от Е не является линейной;
- при переполяризации сегнетоэлектрика обнаруживается явление гистерезиса;
- наблюдается сложная зависимость є от температуры, для каждого сегнетоэлектрика существует температура Кюри, выше которой он утрачивает свои свойства и становится обычным диэлектриком.

Благодарю за внимание