Лекция 86

ПЛАН ЛЕКЦИИ

- 1. Квантовая статистика Ферми Дирака.
- 2. Квантовая статистика Бозе Эйнштейна.

ПРИНЦИП ПАУЛИ (повтор).

В определенном квантовом состоянии может находиться не более одного электрона.

Квантовое состояние частицы определяется четырьмя квантовыми числами: \boldsymbol{n} (главное квантовое число), \boldsymbol{l} (орбитальное квантовое число), \boldsymbol{m} (магнитное квантовое число), \boldsymbol{m}_s (спиновое квантовое число). Следовательно,

В атоме не может быть больше одного электрона с одинаковыми четырьмя квантовыми числами.

Особенность фермионов: они подчиняются принципу Паули, следовательно, могут находиться в различных состояниях (ячейках фазового пространства) только поодиночке.

Вид функции (без вывода):

$$f_{\phi}(E) = \left(e^{\frac{E-\mu}{kT}} + 1\right)^{-1}$$

μ - химический потенциал вырожденного газа фермионов (уровень Ферми).

Химический потенциал выражает изменение энергии изолированной системы постоянного объема, вызванное изменением в ней числа частиц на единицу.

$$f_{\Phi}(E) = \left(e^{\frac{E-\mu}{kT}} + 1\right)^{-1}$$

Из формулы видно, что если $E = \mu$ функция распределения $f_{\phi}(E) = 1/2$ при любой температуре $T \neq 0$.

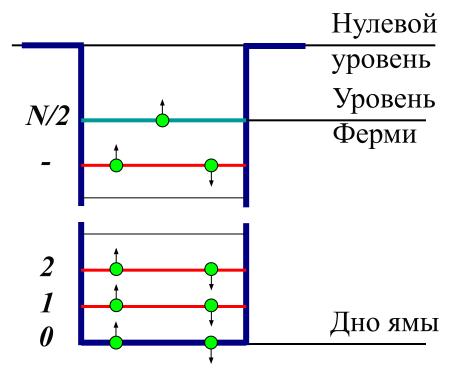
Следовательно, со статистической точки зрения уровень Ферми - это энергетический уровень, вероятность заполнения которого равна 1/2.

Функцию распределения называют функцией Ферми – Дирака.

Распределение электронов в металле при абсолютном нуле. Энергия Ферми.

Металл для свободных электронов является потенциальной ямой.

$$f_{\phi}(E) = \left(e^{\frac{E-\mu}{kT}} + 1\right)^{-1}$$



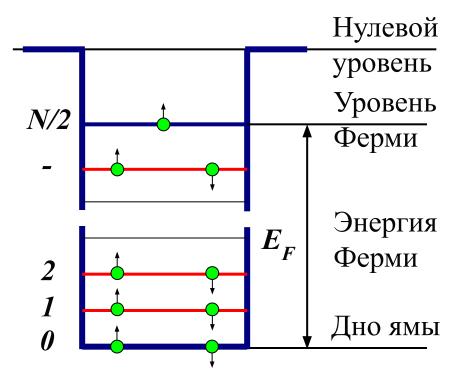
Горизонтальные линии - энергетические уровни, которые могут занимать электроны.

В соответствии с принципом Паули на каждом таком уровне могут разместиться по два электрона с противоположными спинами.

Если электронный газ содержит N электронов, то последним занятым окажется уровень N/2.

Этот уровень Ферми для вырожденного электронного газа.

$$f_{\phi}(E) = \left(e^{\frac{E-\mu}{kT}} + 1\right)^{-1}$$

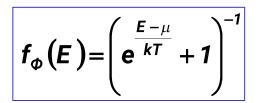


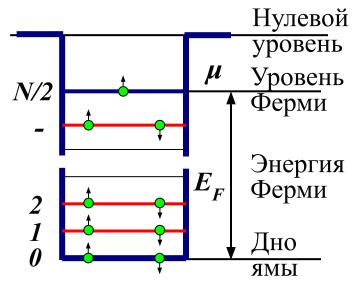
Он соответствует максимальной кинетической энергии E_F , которой может обладать электрон в металле при абсолютном нуле.

Энергию E_F называют энергией Φ ерми.

Итак, при абсолютном нуле все состояния с энергией $E < E_F$ заняты электронами, состояния с энергией $E > E_F$ свободны.

Иначе, при абсолютном нуле вероятность заполнения электронами состояний с энергией $E < E_F$ равна 1, с энергией $E > E_F$ равна нулю.





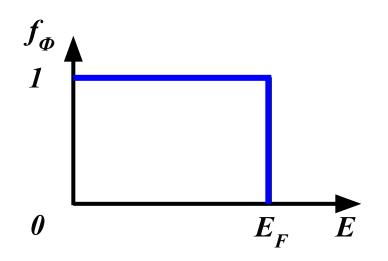
Получим этот же результат из функции распределения.

Будем считать, что при T = 0Kхимический потенциал электронного отсчитанный газа. OT лна потенциальной ямы, равен энергии Ферми E_F : $\mu = E_F$.

Тогда функция распределения будет иметь следующий вид:

$$E_F$$
 Ферми $f_{\Phi}(E) = \left(e^{\frac{E-E_F}{kT}} + 1\right)^{-1}$ Если $E < E_F$, то при $T = 0$ К $exp\left(\frac{E-E_F}{kT}\right) \to \theta$ и $f_{\Phi} = 1$. Если $E > E_F$, то при $T = 0$ К $exp\left(\frac{E-E_F}{kT}\right) \to \infty$ и $f_{\Phi} = 0$.

График функции распределения Ферми — Дирака при абсолютном нуле имеет вид ступеньки, обрывающейся при $E = E_F$.



Учитывая, что в интервале от θ до E_F функция $f_{\phi} = 1$, запишем полную функцию распределения Φ ерми — Дирака при абсолютном нуле:

$$N(E)dE = f(E)q(E)dE =$$

$$= \frac{4\pi V}{h^3} (2m)^{3/2} \sqrt{E} dE$$

Из этого выражения после интегрирования от θ до E_F можно определить энергию Ферми E_F :

$$E_F = \frac{h^2}{2m} \left(\frac{3n}{8\pi}\right)^{2/3}$$

где $\mathbf{n} = \mathbf{N}/\mathbf{V}$ - концентрация электронного газа в металле.

Влияние температуры на распределение Ферми – Дирака.

С повышением температуры электроны подвергаются тепловому возбуждению и переходят на более высокие энергетические уровни, вследствие чего меняется характер распределения их по состояниям.

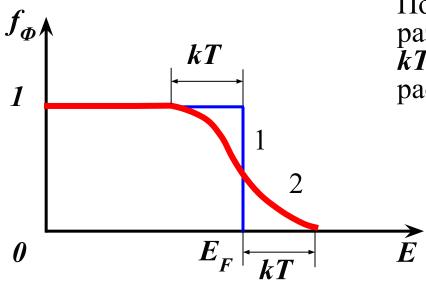
Однако в интервале температур, в котором энергия kT теплового движения остается значительно ниже энергии Ферми $E = E_F$, тепловому возбуждению могут подвергаться электроны лишь узкой полосы kT, непосредственно расположенной у уровня Ферми.

Электроны более глубоких уровней остаются практически не тронутыми, так как энергия kT теплового движения недостаточна для их возбуждения (для перевода за уровень Ферми).

В результате теплового возбуждения часть электронов, имевших энергию, меньшую E_F , переходит на уровни с энергией, большей E_F и устанавливается новое их состояние

Влияние температуры на распределение Ферми – Дирака.

Кривая 1 - распределение электронов по состояниям при T=0. Кривая 2 - распределение электронов по состояниям при T>0.



Повышение температуры приводит к размытию распределения на глубину kT. Правее E_F появляется «хвост» распределения.

«Хвост» распределения описывается распределением Максвелла.

Доля возбужденных электронов, даже при комнатных температурах мала (менее 1% электронов проводимости).

Следовательно, в большом диапазоне температур распределение электронов по состояниям соответствует распределению при T=0.

В отличие от фермионов, подчиняющихся принципу Паули, бозоны могут занимать как свободные состояния, так и состояния, уже занятые другими бозонами.

Вид функции распределения бозонов по состояниям (функция распределения Бозе – Эйнштейна):

$$f_E(E) = \left(e^{\frac{E-\mu}{kT}} - I\right)^{-1}$$
 Сравните - $f_{\Phi}(E) = \left(e^{\frac{E-\mu}{kT}} + 1\right)^{-1}$

Рассмотрим некоторые свойства бозонов на примере фотонного газа.

Световые волны не возмущают друг друга. Фотоны не взаимодействуют между собой.

Поэтому излучение, находящееся в равновесии со стенками полости, в которой оно заключено, можно представить как идеальный фотонный газ.

Фотоны имеют спин s = 1, и являются, таким образом, бозонами.

Особенности фотонов (по сравнению с другими бозонами, например, ядрами гелия):

- 1. Масса покоя фотонов равна нулю.
- 2. Все фотоны движутся с одной и той же скоростью, равной скорости света c, но могут обладать различной энергией E и импульсом p:

$$E = hv = \mathbb{Z}\omega$$
, $p = \frac{hv}{c} = \frac{\mathbb{Z}\omega}{c}$, следовательн $E = pc$

3. Фотоны не сталкиваются между собой, поэтому равновесное распределение в фотонном газе может устанавливаться только в присутствии тела, способного поглощать и излучать фотоны.

4. Фотоны могут создаваться (при излучении) и уничтожаться (при поглощении) в любых количествах.

Поэтому число фотонов в фотонном газе не является строго постоянным и зависит от состояния газа.

Однако при фиксированных параметрах V и T в равновесном состоянии фотонный газ содержит такое число фотонов N_{ϱ} , которое обеспечивает минимум энергии газа.

Условие равновесия фотонного газа:

$$\left(\frac{dU}{dN}\right)_{V,T}=0$$

Поскольку
$$\left(\frac{dU}{dN}\right)_{V,T} = \mu$$
, то из условия равновесия следует $\mu = 0$.

Таким образом, химический потенциал равновесного фотонного газа равен нулю.

С учетом этого свойства можно получить функцию распределения равновесного фотонного газа:

$$f_{\phi om.}(E) = \left(e^{\frac{\mathbb{N}\omega}{kT}} - 1\right)^{-1}$$

Эта формула Планка.

Она выражает среднее число фотонов, обладающих энергией $\, \mathbb{Z} \omega \,$