

МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Московский институт электронной техники»

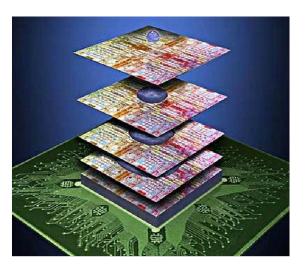
Институт перспективных материалов и технологий

Королев Павел Андреевич

Бакалаврская работа по направлению 22.03.01 «Материаловедение и технологии материалов»

«Исследование особенностей процесса формирования термитного материала $Al\text{-}CuO_v\text{-}CNT$ методом электрофоретического осаждения»

Научный руководитель: ассистент института ПМТ, к.т.н. Лебедев Е.А.

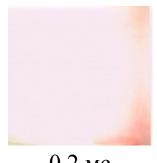


Актуальность

- Более 100 лет назад термитные материалы использовались в качестве сварки для рельсов.
- Сейчас термитные материалы активно исследуются в микроэлектронике.

Использование термитных материалов в качестве сварки для рельсов

Использование термитных материалов в микроэлектронике


Возможности порошковых термитных материалов

Al-Cu O_x Скорость распространения: 150 м/с

0 мс

0,08 мс

0,12 мс

0,2 мс

Al- FeO_x Скорость распространения: 0.3 м/c

7.5 M/C

0 мс

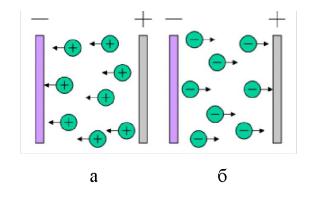
3 мс

30 мс

100 мс

Al-Ni Скорость распространения: 0.015 м/с

0 мс


1000 мс

2000 мс

3000 мс

Преимущества электрофореза

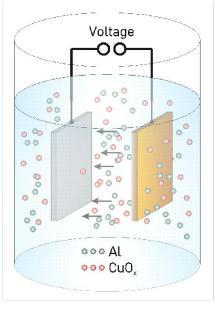
Схематическая иллюстрация процесса электрофоретического осаждения:

а) катодный процесс; б) анодный процесс

- Осаждение можно производить на любые проводящие подложки;
- возможность осаждения многокомпонентных композитных материалов;
- не требует дорогостоящего оборудования.

Цели и задачи

Цель:


• разработка и исследование особенностей процесса формирования термитного материала Al-CuO_x-CNT методом электрофоретического осаждения для использования в качестве инициатора вторичных реакций.

Задачи:

- выбор материала для подложки и подготовка суспензии для электрофоретического осаждения;
- исследование влияния напряжения, времени, количества циклов осаждения на проведение процесса;
- анализ морфологии состава при помощи РЭМ-исследований;
- исследование влияния добавления углеродных нанотрубок в состав формируемого материала на скорость распространения реакции горения материала.

Технологическая часть

Этапы подготовки перед процессом электрофоретического осаждения:

- •взвешивание компонентов суспензии;
- •добавление растворителя в суспензию и перемешение ее компонентов в ультразвуке;
- •сборка ячейки и проведение процесса электрофоретического осаждения.

Электрофоретическая ячейка

a

б

Фото электрофоретической ячейки, распечатанной на 3D-принтере: а) вид сбоку; б) вид сверху и держатели для электродов

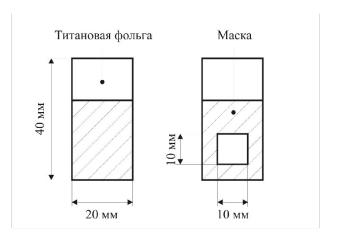


Фото разбиения частиц компонентов суспензии при помощи ультразвука

Режимы электрофоретического осаждения

- Напряжение: 10 150 B;
- Продолжительность цикла осаждения: 4 50 мин.;
- Количество циклов: 1 5;
- Расстояние между электродами 10 мм;
- Состав суспензии: 50 мл изопропилового спирта + 30 75 мг активного вещества.
- Материал подложки титановая фольга.

Схематическое изображение маскирования экспериментального образца с обратной и лицевой стороны

Экспериментальное исследование процесса осаждения с составом Al-CuO,

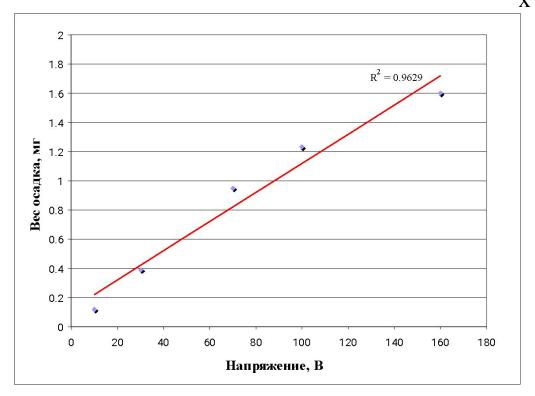
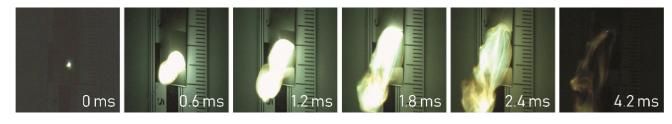
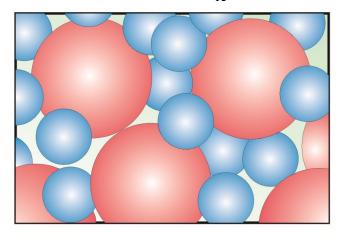
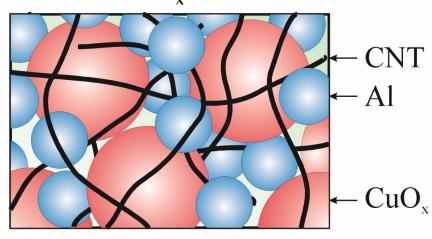



График зависимости веса осаждаемого материала Al-CuO_x от напряжения

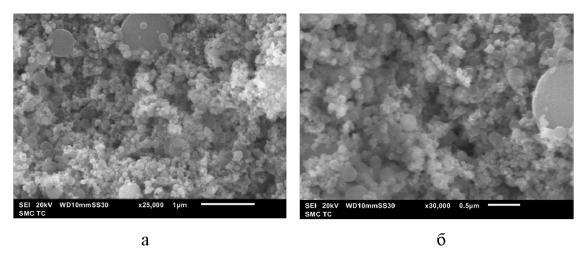


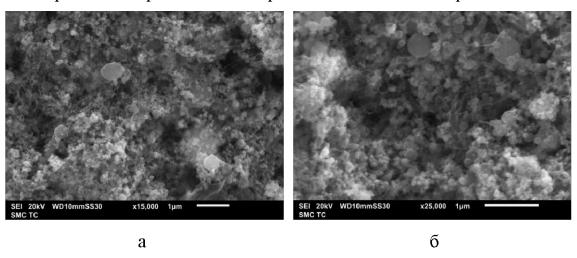
Раскадровка видеосъемки горения термитного материала Al-CuO_x


Выбор материала Al-CuO_x-CNT

Al-CuO_x

- Высокая скорость распространения фронта реакции;
- низкая энергия инициации.

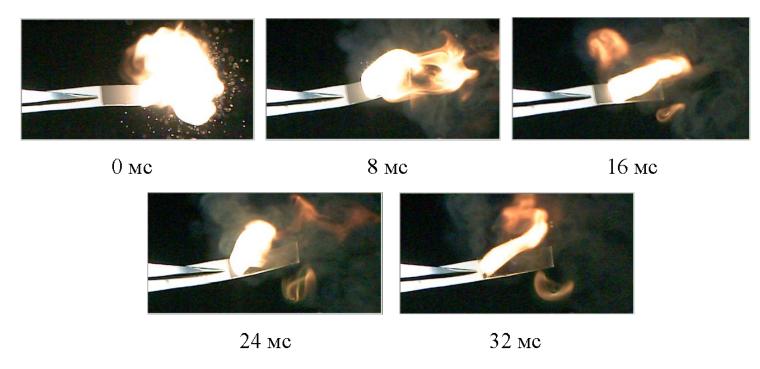

Al-CuO_v-CNT


- Возможность управления условиями горения и энергии инициирования;
- обеспечивает механическую прочность осаждаемого слоя.

Экспериментальные исследования процесса осаждения с составом Al-CuO_x-CNT

РЭМ-изображения образца под номером 69 Al-CuO $_{\rm x}$ -CNT в разных масштабах

РЭМ-изображения образца под номером 141 Al-CuO_x-CNT в разных масштабах


Сравнительная таблица

Сравнительная характеристика образцов

№ образца	АІ, МГ	CuO _x , мг	СNТ, МГ	U, B	Время, с	Кол-во циклов
69	25	50	1	70	4	2
112	15	30	1	100	10	1
117	15	30	1	150	5	6
128	15	15	1	150	10	1
135	12,5	17,5	1	150	20	1
136	12,5	17,5	1	150	50	1
141	12,5	17,5	1	150	10	5

Раскадровка горения термитного материала

Раскадровка видеосъемки горения термитного материала Al-CuO_x-CNT

Выводы

- Разработана методика создания суспензии для электрофоретического осаждения термитных материалов;
- Исследована скорость осаждения и горения термитных материалов Al-CuO_x-CNT;
- Спроектирована и изготовлена ячейка для электрофоретического осаждения;
- было показано, что при добавлении углеродных нанотрубок скорость распространения фронта реакции снижается (4,14 м/с без нанотрубок и 0,31 м/с при их добавлении), а энергия инициации повышается.
- Данные образцы были использованы в составе термоэлектрических устройств в качестве инициатора вторичных реакций.

Спасибо за внимание!