Пропускная способность ТВ

Канал ЦТВ	П (МГц)	Вид модуляции	$C_{yд}\left(rac{ extsf{бит}}{ extsf{c}\cdot \Gamma extsf{ц}} ight)$	Пропускная способность канала ЦВТ $C_{yд} \cdot \Pi \left(\frac{\text{Мбит}}{c} \right)$
Спутниковый	27	4-QAM	2	54
Наземный	7,61	COFDM (16-QAM)	2,84	21,6
Кабельный	9	64-QAM	6	54

Параметры ТВ сигналов

Параметры	Стандартное ТВ	Телевидение высокой четкости ТВЧ
Регламентирующий документ	Рекомендация <i>ITU-R</i> BT.601	Рекомендация <i>ITU-R</i> BT.709
Разрешение (матрица отсчетов)	576×720	1080×1920
Формат цветовой дискретизации	4:2:2	4:2:2
Частота дискретизации сигнала яркости <i>Y</i>	13,5 МГц	74,25 МГц
Частота дискретизации цветоразностных сигналов и	6,75 МГц	37,125 МГц
Формат кадра	4:3	19 : 9
Скорость цифрового потока при кодировании 10 бит/отсчёт	270 Мбит/с	1485 Мбит/с

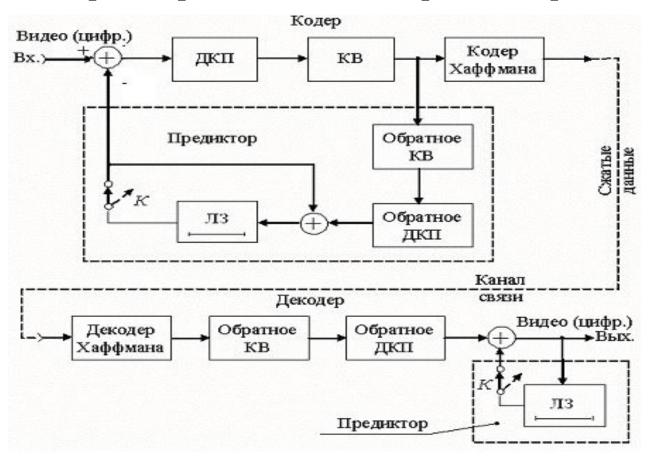
Значения E для трех уровней стандарта NPEG-2

Уровень <i>МРЕG</i> -2	Высокий (ТВЧ)	Основной (<i>B/G</i> ; <i>D/K</i>)	Низкий (<i>CIF</i>)
Разрешение (матрица отсчетов)	1080×1920	576×720	281×352
Формат цветовой дискретизации	4:2:2	4:2:2	4:2:0
Разрядность кода <i>n</i>	10	10	8
Битовая скорость на входе кодера	1485	270	80
Битовая скорость на выходе кодера (Мбит/с)	≤ 80	≤ 15	≤ 4
Е (не менее)	≥ 18,56	≥ 18	≥ 20

Типы ДКП

• Матрицы для первых четырёх типов ДКП [1]:

$$DCT-1_n = \left[\cos k l \frac{\pi}{n-1}\right]_{0 \le k, l < n}$$


$$DCT-2_n = \left[\cos k(l + \frac{1}{2})\frac{\pi}{n}\right]_{0 \le k, l < n}$$

$$DCT-3_n = \left[\cos(k + \frac{1}{2})l\frac{\pi}{n}\right]_{0 \le k, l < n}$$

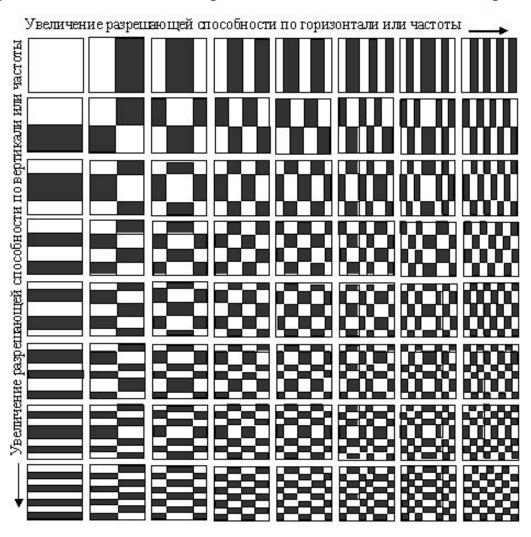
$$DCT-4_n = \left[\cos(k + \frac{1}{2})(l + \frac{1}{2})\frac{\pi}{n}\right]_{0 \le k, l \le n}$$

Видеокодер/декодер MPEG-2

• Схема алгоритма работы видеокодера/декодера *MPEG*-2

Видеокодер/декодер MPEG-2

 Для блока 8х8 пикселей ДКП определяется выражением:


(1)
$$F(u,v) = \frac{1}{4} \cdot C(u) \cdot C(v) \times \left[\frac{1}{4} \cdot C(u) \cdot C(v) \times \sum_{x=0}^{7} \sum_{y=0}^{7} f(x,y) \cdot \cos \left[\frac{(2x+1)u\pi}{16} \right] \cdot \cos \left[\frac{(2y+1)v\pi}{16} \right];$$

$$C(u),C(v) = \begin{cases} 1/\sqrt{2} & \text{при } u,v=0;\\ 1 & \text{при } u,v=0; \end{cases}$$

Видеокодер/декодер MPEG-2

```
где f(x,y) – блок данных на входе процессора ДКП; x,y – номера столбцов и строк в блоке; F(u,v) – блок данных на выходе процессора ДКП; u,v – номера столбцов и строк в блоке данных; номера x,y,u,v изменяются от 0 до 7.
```

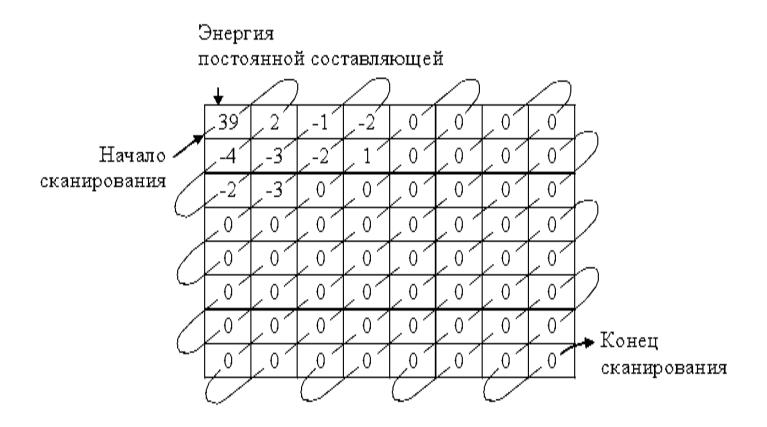
Набор стандартных изображений

Обратное квантование и ДКП

• Обратное квантование производится по формулам, обратным выражению (2):

$$F(u,v) = F'(u,v) \cdot M(u,v) \cdot m;$$

$$F(0,0) = F'(0,0) \cdot M(0,0).$$
(3)


Обратное ДКП вычисляется по формуле, обратной выражению (1):

$$f(x,y) = \frac{1}{4} \sum_{u=0}^{7} \sum_{v=0}^{7} C(u)C(v)F(u,v) \times$$

$$\times \cos\left[\frac{(2x+1)u\pi}{16}\right] \cdot \cos\left[\frac{(2y+1)v\pi}{16}\right].$$
(4)

Кодирование блока ДКП

• Блок дискретно-косинусного преобразования (ДКП)

Зигзаг-сканирование блока ДКП

• 1. В результате зигзаг – сканирования коэффициенты ДКП выстраиваются в ряд в направлении сканирования, образуя, 64-элементный вектор:

• 39, 2, -4, -2, -3, -1, -2, -2, -3, 0, 0, 0, 0, 1 E.

- Далее следуют нули, которые можно не передавать по каналу связи, введя за последним отличным от нуля коэффициентом ДКП специальный код E (end of block – конец блока).
- Длина «укороченного» кода равна 14.

Нормировка коэффициентов

• 2. Нормируем все значения относительно m = 5 (кроме первого значения) и округлим полученные значения:

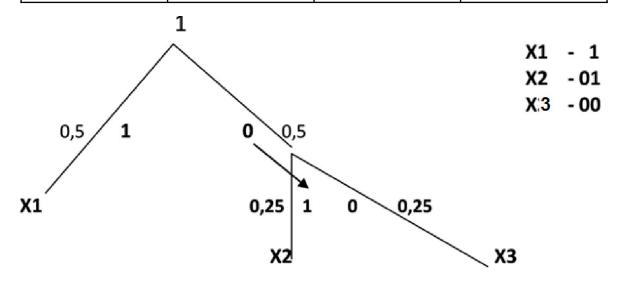
• Коэффициент сжатия равен

$$K_{\tilde{n}\alpha} = \frac{64}{9} \approx 7,11.$$

Групповое кодирование

- 3. Произведем групповое кодирование (*RLE*) «укороченного» вектора.
- Существует несколько вариантов алгоритма *RLE*. В частности, вектор свертывается в байтовые пары типа (a, b), где первым байтом передается число, а пропускаемых нулей, а вторым байтом значение b очередного ненулевого коэффициента ДКП.
- Для рассматриваемого примера «укороченный» вектор принимает вид:
- (0, 39); (1, -1); (1, -1); (3, -1); *E*.

Определение частоты встречаемости


• 4. Определим для каждой байтовой пары частоту встречаемости

Значение	Байтовая	Количество	Вероятность
	пара		
X1	(1,-1)	2	0,5
X2	(0,39)	1	0,25
		_	,
X3	(3,-1)	1	0,25

Дерево кодирования

• 5. Построим дерево кодирования по Хаффману.

X1	0,5	0,5	1
X2	0,25	0,5	
X3	0,25		

Цена кодирования и коэффициент сжатия

- 6. Определим цену кодирования
- L = 1.0,5 + 2(0,25.2) = 1,5.
- 7. Запишем последовательность байтовых пар в виде кодовых комбинаций: 0 1 1 1 0 0.
- Коэффициент сжатия в примере: (8x8x8)/6 = 512/6 = 85.
- Коэффициент сжатия при кодировании по Хаффману составляет в среднем 10…15.
- Результирующий коэффициент сжатия при внутрикадровом кодировании (для І-кадров) составляет.

Восстановление сообщения

- 8. Восстановление сообщения (блока ДКП):
- двигаясь по ветви полученной кодовой последовательности, приходим к нужному символу
- (0, 39); (1, -1); (1, -1); (3, -1); E.

Список использованных источников и литературы

- 1. Шульгин В.И. Системы цифрового телевидения. Харьков, ХАИ, 2010.
- 2. Кодирование длин серий. Материал из Википедии свободной энциклопедии.
- 3. Казанцев Г.Д. Телевидение и телевизионные устройства: Учебное пособие. Томск: кафедра ТУ, ТУСУР, 2012. 216 с.
- 4. Одинец А.И. Цифровые устройства. Учебное текстовое электронное издание. Омск: ОмГТУ. -.2016. 90 с.