Ilya Yu. Kolesnikov

Robust Non-Algebraic Reissner-Mindlin Plate Finite Elements

Geophysical Center of the RAS

Study Subject : Locking VS. Stability for R – M thin plates

The most "STATIC" area in FEM is Shape Functions of Algebraic type.

1D, 2D, 3D Non – Algebraic Shape Functions for Arbitrary Number of Boundary Nodes

A Continuation Method: D.F. Davidenko; V.I. Shalashilin

Thin plates with Strongly Connected Boundaries

Ref. : Tseitlin A.I., 1971.

Thin plates with Strongly – Weakly Connected Boundaries

Reissner-Mindlin Thin Plate Bending – the case of Weak Connected boundaries / Zero Energy Modes

3 Point Plate loaded at Center: increasing ZEM & Stabilization

Reissner – Mindlin Plate Bending: Identification of Torsion

4 – Point Singular Thin Plate Bending & Stabilization by RM Shear FEs

Appendix: Spectral Non – Algebraic Shape Functions Properties

1D, 2D, 3D Interpolations for Uniformly Spaced Nodes

For Optimal Nodes NO Runge Phenomenon.

For Complete Interpolation Bases NO Gibbs Phenomenon.

For Arbitrary Number of Boundary Nodes NO Internal Nodes.

Expansions into the Shape Functions series

