Усилители яркости, преобразователи изображения, формирователи экспонирования: Электронно-оптические преобразователи (продолжение)

ЭОП со щелевой развёрткой – стрик-камера

<u>Принцип действия</u>

<u>Развертка во времени</u> спектра свечения плазмы

Диссектор

<u>Принцип действия</u>

- на фотокатоде при освещении создается электронное изображение
- щелевая диафрагма вырезает малую часть этого изображения
 напряжением на отклоняющих пластинах можно направить в
- электроны из заданной облас НАНА фотокатоде
- за щелью находится обычный электронный умножитель
- измеряется выходной ток

 -> если расположить диссектор на выходе спектрального прибора, то можно, подавая на отклоняющие пластины синусоидальное напряжение, получить на выходе периодическую развертку спектра ния плазмы

Измерение профиля линии Н_" на установке ГОЛ-3

Фотометрия фасеточных изображений

Рассмотрим работу ЭОП с МКП в импульсном режиме с предельной чувствительностью. Доля сработавших каналов << 100%

Изображение - не перекрывающиеся точки.

$$\Phi = \Delta \Phi \times n$$

 $\Delta \Phi$ - поток от одной точки

п - число точек на единицу площади

!!! На точность измерения влияет статистика (малое число сработавших точек)

Применения ЭОП – быстрые электроны

a) фотокатоды из Au, Al, Csl, Cul, входное окно - Ве, 10-300 мкм б) ЭОП с микроканальной пластиной

Примеры диагностик – ВУФ спектр

Спектр ВУФ излучения плазмы вблизи линии La – 121,6 нм

в экспериментах на установке ГОЛ-3

ЭОП расположен на выходе вакуумного спектрального прибора

экспозиция 500 нс

экспозиция 1/30 с

снимок ЭОП до выстрела

снимок ЭОП в выстреле

121.6 нм Lα

окно LiF

Примеры диагностик – видимый спектр

Спектр излучения плазмы вблизи линии Н_а – 656,3 нм

в экспериментах на установке ГОЛ-3

ЭОП расположен на выходе спектрального прибора по высоте щели с пространственным разрешением

Примеры диагностик – рентгеновский ЭОП

<u>Задача</u> - изучить воздействие мощного плазменного потока на ГОЛ-3 конструкционные материалы термоядерных реакторов

Схема измерений

Фотография

экспозиция 0.3 мкс через 3.4 мкс от начала инжекции электронного пучка

Примеры диагностик – ВУФ ЭОП

ВУФ = Вакуумный УльтраФиолет, 10-100 эВ

крупинка CH₂, 0.15 мг экспозиция 1² мкс

Объемный взрыв Замагничивание Термализация

~3·10⁵ см/с, ~5 эВ

v ~ 3·10⁶ см/с

Расширение: 3D 3D -> 1D 1 2 μ S 4 μ S 6 μ S

Спектрально-селективные приборы

- Поглощающие фильтры
- Интерференционные и поляризационные фильтры
- Фильтры для рентгеновского и ИК диапазонов
- Спектральные приборы с призмой
- Спектральные приборы с дифракционной решеткой
- Интерферометр Фабри-Перо
- Спектрометры рентгеновского диапазона
- Спектрометры с многослойными зеркалами
- Рентгеновские спектрометры на кристаллах

Фильтры (определения)

 $T = Φ/Φ_0 - пропускание (зависит от длины волны)$ $R = λ_0/δλ - разрешающая способность$ R = 10-100 - низкаяR = 10³÷10⁵ - средняяR > 10⁶ - высокаяT_{max}/T_{min} - контрастность (10⁴÷10⁸ - очень хорошая)полоса пропускания – интервал, для которого T > k·T_{max}(обычно k = 0.5 или 0.1)

Поглощающие фильтры

- Фильтры из цветного стекла или других окрашенных твёрдых веществ
- Газовые фильтры
- Жидкостные фильтры

Поглощение света подчиняется закону Бугера – Ламберта – Бера

$$\Phi_{\lambda} = \Phi_{0\lambda} \cdot 10^{-k(\lambda)l}$$

k – коэффициент ослабления *l* – толщина фильтра

Кривые пропускания светофильтров, отсекающих коротковолновую область спектра: 1- БС4, 2 – БС5, 3- БС7, 4- БС8, 5-ЖС10, 6- ЖС11, 7- ЖС12, 8-ЖС16, 9-ЖС17, 10-ЖС18

<u>Для жидкостных и газовых фильтров:</u> $k(\lambda) = \varepsilon_{10} \cdot C$

- С концентрация, моль/л
- ϵ_{10} молярный коэффициент экстинкции, (см·моль/л)-1

1 – вода толщиной 1 см

2 – раствор хлористой меди 2 см, 2.5%

Фильтры ИК диапазона

Метод фокальной изоляции (использование хроматической аберрации)

<u>Фильтр Вуда</u>

фокус в среднем ИК (n~2 для **~50 мкм) фокус в видимом свете (n~1.5)

Фокальный монохроматор

 $\lambda_0/\delta\lambda \sim 50$

Ø~05 мм

перестройка длины волны

<u>Дисперсионный фильтр (фильтр Христиансена)</u>

взвесь мелких частиц (капель) одного вещества в другом пока $n_1 \neq n_2$, происходит сильное рассеяние света

 $\lambda_0/\delta\lambda \sim 5 \div 10$

частный случай: порошок прозрачного вещества в воздухе, резонансные явления при размере частиц порядка длины волны

обзор УФН, т.25, 1941

СВЧ и ТГц фильтры

Одиночная частотно-избирательная поверхность (ЧИП)

Примеры амплитудных (1), (3) и фазовых (2), (4) спектральных характеристик моды Флоке для тонких медных сеток индуктивного и емкостного типов при разных значениях коэффициента заполнения a/g (толщина металлизации: t/g=1·10⁻³; нормальное падение). LCR-модели сеток приведены на рис. (А) и (В).

Фильтры ИК диапазона - 2

Селективное отражение

метод остаточных лучей –

многократное отражение для «очистки» спектра и улучшения контрастности.

Фильтр полного внутреннего отражения

расстояние между призмами порядка длины волны, коротковолновое излучение отражается

 $\lambda_1 < \lambda_2 < \lambda_3, \quad \lambda_1 < l_1 < \lambda_2, \quad \lambda_2 < l_2 < \lambda_3$

Отражение от матированных поверхностей

излучение с λ >> размеров шероховатости отражается зеркально излучение с λ << размеров шероховатости рассеивается область применения: средний и дальний ИК диапазон, >20 мкм

Интерференционные фильтры

Интерференция в тонких плёнках

если тонкая пластина в воздухе (n > 1, $n_0 = n_1 = 1$), то для отражённых лучей оптическая разность хода $\Delta = 2nh\cos\psi + \lambda/2$ ИЛИ $\Delta = 2h\sqrt{n^2 - \sin^2\phi} + \lambda/2$ максимумы интерференции при $2nh\cos(\psi) + \lambda/2 = m \lambda$

Интерференция для тонкого слоя

для коэф. отражения R и пропускания T: R + T = 1амплитуда прошедшей волны: $E_2 = E_{21} + E_{22} + \ldots + E_{2N}$ сдвиг фаз между волнами: $\delta = 4nh\cos\psi - \pi$ в итоге: $E_2 = TE_0(1 + Re^{-i\delta} + \ldots + R^{N-1}e^{-i(N-1)\delta})$ интенсивность прошедшей волны:

$$I = \frac{E_2 E_2^*}{2} \qquad I_2 = I_0 \frac{T^2}{(1-R)^2 + 4R \sin^2}$$

(формула Эйри)

- в максимуме $I_2 = I_0$ (волна проходит без потерь)
- в минимуме пропускание зависит от коэффициента отражения:

$$I_{\text{MAUH}} = I_0 \frac{(1-R)^2}{(1+R)^2}$$

□ требуются высокие коэффициенты отражения

Интерференционные фильтры - 2

Многослойные диэлектрические зеркала

<u>проблема</u>: мала величина *R* для диэлектриков, *R* ~ 0.3 получаются для TiO₂ (*n*=2.45) и ZnS (*n*=2.3) <u>выход</u>: многослойное покрытие слоёв из двух разных материалов [часто ZnS (*n*=2.3) и криолит Na₃AlF₆ (*n*=1.35)]

Если подобрать толщину слоёв, как на рисунке, то будет селективно отражающее зеркало. Для 9-11 слоёв $R \sim 0.99$, т.е лучше, чем у металлов ($R \sim 0.97$ max.) Для $n_1 = \sqrt{n}$ весь падающий свет проходит ($R \sim 0$), т.е имеем просветление оптики.

Многослойные диэлектрические фильтры

Боковые полосы пропускания

• подавление побочных полос пропускания поглощающими фильтрами

• рабочую длину волны можно "подстраивать" в синюю область, наклоняя фильтр

$$\lambda = \lambda_0 \sqrt{1 - \left(\frac{\sin\theta}{n}\right)^2}$$

Полихроматор на многослойных фильтрах

ГОЛ-3 диагностика томсоновского рассеяния

!!! попадающий в канал спектр зависит и от пропускания всех предыдущих фильтров

Интерференционно-поляризационный фильтр

П – поляризатор, К – двулучепреломляющий кристалл с осью под 45°

 $\Delta \varphi = 2\pi \frac{l}{\lambda} (n_1 - n_2)$

(для обыкновенной и необыкновенной волн, зависят от длины волны)

$$\delta \lambda = rac{\lambda^2}{l(n_1 - n_2)}$$
 - доли ангстрема

требуется выделение рабочей линии !!!

<u>Фильтр Лио:</u>

- оптическая длина следующего кристалла удваивается

Пример реализации:

- на линию H_α (λ = 656.2 нм)
- 11 ступеней, δλ = 0.3 нм, R ~ 22000
- первые ступени из кварца, потом из шпата
 - $(n_1 n_2) = 0.01$ и 0.17, соответственно
- проблема: нужна хорошая термостабилизация (дрейф ~0.05 нм/градус)

Фильтры для ВУФ и рентгеновской области

Пропускание в ближнем ВУФ диапазоне – оптические материалы

материал	кварц	сапфир	BaF ₂	CaF ₂	MgF ₂	LiF
λ, ΗΜ	150	142	130	118	110	100

* для тонкого окна, изготовленного из высококачественного материала

Рентгеновский диапазон – тонкие поглощающие фильтры

$$I = I_0 \cdot e^{-k(\lambda) \cdot d \cdot \rho} = I_0 \cdot e^{-k_E(E) \cdot d \cdot \rho}$$

- фотоэффект !

$$\lambda[\mu M] = 1240 / E[\Im B]$$

Полосовые рентгеновские фильтры

Фильтры на скачках поглощения

С ростом энергии пропускание растёт. Если энергия фотона начинает превышать порог возбуждения очередной электронной оболочки в атоме, то поглощение резко усиливается (скачок).

<u>Оболочки (от ядра):</u>

Фильтры Росса

Разность сигналов двух детекторов с фильтрами из элементов Z и Z+1.

Зеркала рентгеновского диапазона

Наблюдается резкий рост коэффициента отражения зеркал при переходе к малым углам падения (относительно плоскости зеркала). Поэтому удаётся организовать селективное отражение для ряда задач (отсечка коротковолнового излучения).

<u>для разных углов падения</u>

влияние интерференционного слоя

отражение в мягком рентгеновском диапазоне

зеркало из алюминия, угол по
отношению к плоскости зеркала

угол падения	88°	80°
коэф. отражения	72%	16%

Зеркальную фокусирующую и поворачивающую оптику использовать можно, но только при касательном падении. Это приводит как к малой светосиле, так и к жёстким требованиям на точность изготовления поверхности и качество сборки. Спектральные приборы. Источники излучения.

Спектральные приборы - определения

- *s* ширина входной щели
- *D* апертурная диафрагма
- *f*₁, *f*₂ фокусные расстояния коллиматорного и камерного объективов

dl – размер монохроматического источника на входе

- *a*(*l*) функция распределения яркости на выходе от монохроматического источника
- $\phi(l)$ истинный (падающий) спектр излучения
- *f(l)* наблюдаемый спектр излучения

1.Аппаратная функция (инструментальный контур) –
$$a(l)$$
 $\int_{-\infty}^{\infty} a(l) \cdot dl = 1$ $f(l') = \int_{-\infty}^{\infty} a(l-l') \cdot \varphi(l) \cdot dl$ 2.Разрешающая способность $R = \lambda_0 / \delta \lambda$ $\int_{-\infty}^{\infty} a(l) \cdot dl = 1$ $f(l') = \int_{-\infty}^{\infty} a(l-l') \cdot \varphi(l) \cdot dl$ 3.Светосилапо освещённости – при фотографической регистрации
по световому потоку – при фотоэлектрической регистрации4.Угловая дисперсия $d\theta / d\lambda$ 5.Линейная дисперсия
 $\frac{dl}{d\lambda} = f_2 \cdot \frac{d\theta}{d\lambda} \cdot \frac{1}{\sin \varepsilon}$, где f_2 – фокусное расстояние объектива
 ε – угол между плоскостью спектра и осью камеры
чаще для приборов приводится обратная линейная дисперсия
 $\frac{d\lambda / dl}{d\lambda}$ [Hм/MM]

Дифракция света на щели Дифракция Фраунгофера

представим щель как набор излучателей размера *dx* интенсивность излучения под углом ф составляет для зоны Фраунгофера

$$dE \sim \frac{E_0}{b} e^{i(kx \sin \phi)} dx$$

интегрируя по всей ширине щели, получим амплитуду дифрагировавшей волны

$$E_{\varphi} \sim \frac{E_0}{b} \int_{-\frac{b}{2}}^{\frac{b}{2}} e^{-ikx'\sin\varphi} dx' \sim E_0 \frac{\sin\left(\frac{kb\sin\varphi}{2}\right)}{\frac{kb\sin\varphi}{2}}$$

интенсивность света в направлении $\boldsymbol{\phi}$

$$I_{\varphi} = \frac{E_{\varphi}E_{\varphi}^{*}}{2} = I_{0}\left(\frac{\sin u}{u}\right)^{2},$$

где $I_{0} = \frac{E_{0}^{2}}{2}; \quad u = \frac{kb\sin \varphi}{2} = \frac{\pi b\sin \varphi}{\lambda}$
е при $\phi = 0$ интенсивность максимальна: $I = I_{0}$
минимумы излучения при $b\sin \varphi = m\lambda$
соотношение интенсивностеи максимумов

 $I_0: I_1: I_2: I_3: ... = 1:0,047:0,016:0,008: ...$ • основное излучение лежит внутри угла

$$2\phi_1 = 2\lambda / b$$

Дифракционная аппаратная функция

дифракция на диспергирующем элементе

считаем пучок света прямоугольным

 $I(a) = I_{\varphi} \frac{\sin^2 \frac{\pi a \sin(\varphi)}{\lambda}}{(\frac{\pi a \sin(\varphi)}{\lambda})^2}.$

где *а* – размер светового пучка на диспергирующем элементе □ дифракционное разрешение зависит от размера прибора

Критерий Рэлея для разрешающей способности

Считаем две тонких линии различимыми, если максимум одной попадает на первый минимум другой.

Тогда провал между пиками (случай **а**) составляет 20% - различимо глазом. Неразличимо – случай **б**.

Размер входной щели *s* неважен, если

$$s \leq s_{\scriptscriptstyle H} = \frac{\lambda f_{o \tilde{o}}}{d_{o \tilde{o}}},$$

где $s_{\rm H}$ – нормальная ширина щели, $f_{\rm of}$, $D_{\rm of}$ – параметры коллимирующего объектива

При меньшей ширине щели световой поток уменьшается, при её увеличении портится спектральное разрешение.

Щелевая аппаратная функция

Обратная линейная дисперсия *d*λ/*dl* □ конечная ширина щели эквивалентна уширению спектральной линии

$$\delta\lambda_{uq} = s' \cdot \frac{d\lambda}{dl} = s \cdot \frac{f_2}{f_1} \cdot \frac{d\lambda}{dl}$$

Размер входной шели *s* неважен, если

$$s \leq s_{_{\mathcal{H}}} = \frac{\lambda f_{o \delta}}{d_{o \delta}},$$

где *s*_н – нормальная ширина щели, *f*_{об}, *D*_{об} – параметры коллимирующего объектива

При меньшей ширине щели световой поток уменьшается, при её увеличении портится спектральное разрешение.

Светосила

яркость входной щели: $b_{\lambda}d\lambda$ поток на выходе: $\Phi_{\lambda}d\lambda = b_{\lambda}d\lambda \cdot S \cdot \Omega \cdot T = b_{\lambda}d\lambda \cdot (hs) \cdot \frac{\pi D^2}{4f_1^2} \cdot T$ площадь щели телесный угол пропускание

s'- выходная щель

- а спектрометр с одной большой щелью
- b спектрометр с двумя разными большими щелями
- с спектрометр с одинаковыми широкими щелями
- d изображение нормальной щели

зависимость уширения линии от ширины щели

Влияние ширины щели - спектрограф

Sh_ <<->

Узкая спектральная линия

$$E_{_{\mathcal{J}\mathcal{U}\mathcal{H}}} = \frac{\Phi_{\lambda}\Delta\lambda}{h's'} = b_{\lambda}\Delta\lambda \frac{f_1^2}{f_2^2 \cdot hs} \frac{hs \cdot \sin\varepsilon}{f_1^2} \frac{\pi D^2}{4} T \sim \frac{D^2}{f_2^2}$$

Для тонкой линии <u>яркость</u> $E_{_{\textit{лин}}}$ <u>не зависит от ширины щели</u>, f_{1} и угловой дисперсии. Для фотографической регистрации нужно брать короткофокусную оптику (в ущерб разрешающей способности).

Слабо изменяющийся сплошной спектр (фон)

$$E_{cnn} = \frac{\Phi_{\lambda}\delta\lambda_{cnn}}{h's'} = b_{\lambda} \frac{1}{f_2^2} \left(\frac{s}{f_1} \frac{d\theta}{d\lambda} \right)^2 T \sim \frac{D^2}{f_2^2} \frac{s}{f_1} \frac{d\lambda}{d\theta}$$

Отношение яркости линии к яркости фона

$$\frac{E_{\text{лин}}}{E_{\text{спл}}} \sim \frac{\Delta \lambda \cdot f_1}{s} \frac{d\theta}{d\lambda}$$

При фотографической регистрации выгодно брать

профиль тонкой линии

нормальную толщину щели

Влияние ширины щели - монохроматор

Узкая спектральная линия

$$\Phi_{_{\mathcal{J}\mathcal{U}\mathcal{H}}} = \Phi_{\lambda} \Delta \lambda = b_{\lambda} \Delta \lambda \frac{hs}{f_1^2} \frac{\pi D^2}{4} T \sim \frac{D^2}{f_1^2} S$$

При широкой входной щели на выходе прямоугольная «линия».

Слабо изменяющийся сплошной спектр (фон)

$$\Phi_{cn\pi} = \Phi_{\lambda} \delta \lambda_{cn\pi} = b_{\lambda} \frac{hs^2}{f_1^3} \frac{\pi D^2}{4} \frac{d\lambda}{d\theta} T$$

$$\frac{E_{\text{лин}}}{E_{\text{сил}}} \sim \frac{\Delta\lambda \cdot f_1}{s} \frac{d\theta}{d\lambda}$$

Зависимость отношения линии к фону та же, что и для спектрометра

Схемы освещения входной щели

Задача осветителя: согласовать светосилу спектрального прибора с характеристиками источника. Если диспергирующий элемент не освещён полностью, то разрешение прибора теряется.

схемы освещения (некоторые примеры)

для протяженного источника

для маленького источника (больше световой поток)

для нестабильного источника (дефокусировка) или для спектрального прибора с астигматизмом

трёхлинзовый осветитель

Призменные спектральные приборы

Существует множество конструкций призменных спектральных приборов, рассмотрим только тот случай, когда в равнобедренной призме свет на основной длине волны идёт параллельно основанию. *!!! в этом случае отклонение лучей призмой минимально*

Закон преломления на поверхности:

желательно применение тяжёлых стёкол (с большим *n*)
зависимость координаты от длины волны нелинейна !

 $D_{\alpha} = \frac{d\alpha}{d\lambda} = \frac{d\alpha}{dn} \frac{dn}{d\lambda}$ $D_{\alpha} = 2 \frac{\frac{\sin \frac{A}{2}}{\sqrt{1 - n^2 \sin^2 \frac{A}{2}}} \frac{dn}{d\lambda}$ - угловая дисперсия

- разрешающая способность, достигает 10⁶

$$\frac{\lambda}{\delta\lambda} = t \frac{dn}{d\lambda}$$

 $n = \frac{\sin\left(\frac{A+\alpha}{2}\right)}{\sin\frac{A}{2}}$

кривизна изображения входной щелиизменение поляризации света

особенности призменных спектрометров:

призменные приборы не имеют проблемы наложения порядков спектра

Приборы с дифракционной решёткой

амплитудные (пропускающие) решётки

пример для дифракции на 6 щелях

каждая щель ооразует волну с угловои направленностью					
$E_{\varphi} = E_0 \frac{\sin u}{u}, u = \frac{\pi b \sin \varphi}{\lambda}$					
между волнами от разных щелей есть разность фаз					
$2\delta = k\Delta = \frac{2\pi}{\lambda} d\sin\varphi$					
[,] интерференция этих волн имеет вид					
$E = E_0 \frac{\sin u}{u} \left(1 + e^{i2\delta} + e^{i4\delta} + \dots + E_N \right)$					
$E = E_0 \frac{\sin u}{u} \frac{\sin N\delta}{\sin \delta} e^{i(N-1)\delta}$					
$I_{\varphi} = I_0 \left(\frac{\sin u}{u}\right) \left(\frac{\sin N\delta}{\sin \delta}\right)^2$					
условие главных максимумов <i>dsin</i> φ=mλ					
интенсивность основного пика $I(0)=N^2I_0$					
<i>N</i> – полное число штрихов					
<i>m</i> – порядок спектра					
угловая дисперсия: $d\phi/d\lambda = m/d\cos\phi$					
разрешающая способность: $\lambda/d\lambda = Nm$					
область свободной дисперсии: $\Delta \lambda = \lambda / m$					

Профилированные (фазовые) решётки

типы фазовых решёток

отражающая

для решетки с углом блеска во 2 порядке

<u>Смысл фазовой решетки</u>: подбором формы волнового фронта переместить максимум концентрации энергии в требуемый порядок интерференции. При этом световой поток не теряется.

решётка с профилированным штрихом

особенности спектрометров с решётками:

возможно наложение линий разных порядков
«духи» из-за периодической неоднородности структуры

Эшелле – решетки с большими углами для работы в высоких порядках спектра, *m* ~ 10÷100

Схема типичного спектрального прибора

Спектрометры с фокусирующими решётками

R - радиус кривизны решёткиКруг Роуланда = окружность с Ø = *R*

Решётка сама является фокусирующим элементом. Входная и выходная щели расположены на круге Роуланда.

<u>Применение</u>: там, где использование линз нежелательно и минимизировать количество отражающих поверхностей (ВУФ).

Рентгеновская область спектра: решётки скользящего падения

Спектрометры с пространственным разрешением

Обзорный спектрометр установки ГОЛ-3

калибровка при помощи 8 ламп накаливания 🛛

Свечение плотной плазмы в разных участках видимого спектра

Интерферометр Фабри-Перо

обычно промежуток воздушный

расщепление линий при эффекте Зеемана (работа 2.1 атомного практикума)

$$m_{\max} = 2L/\lambda$$

Угловая дисперсия: $\frac{d\psi}{d\lambda} = \frac{1}{\lambda\psi}$
Область свободной дисперсии: $\Delta\lambda = \frac{\lambda^2}{2L} = \frac{\lambda}{m}$
Разрешающая способность: $R = \frac{\lambda}{\Delta\lambda} = m \cdot N_{eff}$
 $N_{eff} = \frac{\pi\sqrt{T \cdot R}}{1 - T \cdot R} = \begin{cases} 14 \text{ при } T \cdot R = 0.8 \\ 314 \text{ при } T \cdot R = 0.99 \end{cases}$
 $\delta\lambda = \Delta\lambda/N_{eff}$ реально $\delta\lambda \sim \Delta\lambda/20$

Условия максимумов:

число различимых линий в пределах области свободной дисперсии

 $2nhcos\psi=m\lambda$

т

Пропускающие рентгеновские решётки

$$\frac{\lambda}{\Delta\lambda} = N = \frac{D}{d} \qquad \qquad \frac{d\lambda}{dl} \approx \frac{L}{b}$$

В нулевом порядке получается изображение объекта.

Недостаток: крайне малая светосила Π использование в системах инерциального синтеза

- разрешением решётки (числом штрихов N),
- 2) размером «монохроматического пятна (минимум D)

- 1)

- Спектральное разрешение определяется:
- Параметры: золото толщиной 0.5 мкм, N = 100, L = 65 см $d\lambda/dl \approx$ 15 Å/мм, λ_{min} = 2 Å (прозрачность золота), $\Delta\lambda \sim$ 4 Å

Рентгеновские спектрометры на кристаллах

2d – постоянная кристаллической решётки

кристалл	2d, Å
LiF	4.028
NaCl	5.639
кварц	6.686
слюда	~20
КАР (калиевая соль фталиевой к-ты)	26,62
стеарат бария	~100

∟органические псевдокристаллы нестойки

Излучение падает на кристалл, вырезанный вдоль одной из главных кристаллографических плоскостей. Глубина проникновения фотонов в вещество составляет много монослоёв.

□ есть интерференция рассеянного излучения

<u>Условие Вульфа-Брэггов</u>

$$m\lambda = 2d \cdot \sin(\theta)$$

- есть длинноволновая граница $\lambda = 2d$
- кристалл «выбирает» одну длину волны
- настройка изменением угла падения/ в узком диапазоне
- очень высокая разрешающая способность и селективность, но маленькая светосила.

Многослойные рентгеновские зеркала

 $m\lambda = 2d \cdot \sin(\theta)$

Для работы в мягком рентгеновском диапазоне (энергия фотонов от 100 эВ до 1 кэВ или λ от 10 до 100 Å) на подложку напыляется много (20-500) чередующихся слоёв из сильно и слабо рассеивающих веществ.

Пример пары: W-C или Ti-Be, нужна оптимизация для рабочей длины волны. Можно подбирать нужный период 2*d* (типичный интервал 40÷600 Å).

как и кристалл, многослойное зеркало является селективным отражателем, но в процессе участвуют не отдельные атомы, а многоатомные слои.

Коэффициент отражения высокий и доходит до ~70% в лучших образцах, светосила гораздо выше, чем у кристаллов (за счёт худшего спектрального разрешения)

<u>Проблемы</u>:

- очень высокие требования к технологии изготовления
- не для всех длин волн удаётся найти хорошую пару элементов
- в интерференции участвуют меньше рассеянных лучей, велико поглощение ширина «кривой качания» составляет ~0.5÷1 градус

Конец лекции