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Chapter 7 Interconnect Delay

7.1 Elmore Delay
7.2 High-order model and moment matching
7.3 Stage delay calculation



Basic Circuit Analysis Techniques

Network structures & state —— Natural response v, (1)

(zero-input response)
Output response

Input waveform & zero-states ——Forced response V(1)
(zero-state response)
For linear circuits: v(t) =v, (¢)+v,(?)
Basic waveforms
— Step input
— Pulse input
— Impulse Input

Use simple input waveforms to understand the impact of
network design



Basic Input Waveforms

1/T,
1
0 -172 T/2
unit step function pulse function of width T unit impulse function

U(t)= { °r=0 PT(t)=%{u(t+g)—u(t—%)} o(t): P (t) when 7' — 0
1 >0 o(t)=0 for t #0

singular for =0

By definition s.t. for any { >0
w(@®) = [ 8(x)dx jia(r)dt:1
. du (1)
or o(1) =
(1) pr




Step Response vs. Impulse Response

 Definitions:
— (unit) step input u(t) (unit) step response g(t)
— (unit) impulse input 8(t) ——unit) impulse response h(t)
(Input Waveform) (Output Waveform)

« Relationship

dut) o dg®)

o(t)=
@) dt dt

u@)=[ s(ydx - g(1)= jo’h(x)dx

« Elmore delay

T, = f g\ (D)t -dt = j:h(t)z-dt



Analysis of Simple RC Circuit

R ‘i(t)+V(t) =V, (t) _Wli(t)
. d(Cv(t dv(t) v c— vt)
dt dt

dv(t . RS
= RCPID (1) = v, (1) - oo oo e

dt T | constant coefficients

state
variable

Input
waveform



Analysis of Simple RC Circuit

zero-input response:  pC dv(?) () =0
dt
1 dv@) 1 .,
(natural response) vt dr = “RC = v, (1) = Ke Yre
dv(t)

step-input response: RC

+v(t) =vu(t)

v, () =vu(t) = v(t) = Ke_%zc + vou(t)

match initial state: v(0)=0 —= K+vu()=0

, v, u(t)
output response 0

for step-input: v(t) = v, (1 - e /R Ju(?) v (1-€7)u(t)




Delays of Simple RC Circuit

V(t) = v (1 - €R¢) under step input v, u(t)

v(t)=0.9v, = t=23RC v(t)=0.5v, = t
=0.7RC
Commonly used metric T.=RC

D
(Elmore delay to be defined later)



Lumped Capacitance Delay Model

R = driver resistance
C = total interconnect capacitance + loading capacitance
Sink Delay: t, = R-C

N30< e N

[>o N, > M 1 c
load
dr[iéei ? ?
N J
. Y
50% delay under step input = 0.7RC

Valid when driver resistance >> interconnect resistance
All sinks have equal delay




Lumped RC Delay Model

ty :Rd'cload :Rd’(

-R,-(C,-L+C,)

¥ o]

driver

>

N,

* Minimize delay < minimize wire length

So i, »

Y

+Cg)

int

? load




Delay of Distributed RC Lines

R R
V(1) Laplace V_ (s) Vi Vour VlN_MM/ITVOUT
outt™” Transform — out I_ C I C
VOUT -
144 ( ) I L  DISTRIBUTED
S) = 1.0 [
4
o scosh/sRC
X —X
e +e
cosh(x) =——
2 | | |
Y2 ¥ 1.0RC 20RC time
=14+ —+—+......
2! 4! Step response of distributed and lumped RC networks.

A potential step is applied at V|, and the resulting V,
is plotted. The time delays between commonly used
reference points in the output potential is also
tabulated.



Delay of Distributed RC Lines (cont'd)

Qutput potential range  Time elapsed Time elapsed
(Distributed RC  (Lumped RC

Network) Network)
0 to 90% 1.0RC 2.3 RC
10% to 90% (rise time) 0.9 RC 22 RC
0to 63% 0.5 RC 1.0RC
0 to 50% (delay) 0.4 RC 0.7 RC

0to 10% 0.1 RC 0.1 RC




Distributed Interconnect Models

» Distributed RC circuit model

— L, T or II circuits

* Distributed RCL circuit model

 Tree of transmission lines



Distributed RC Circuit Models

Cyf2 c2 Co

I1-type T-type




Distributed RLC Circuit Model
(without mutual inductance)




Delays of Complex Circuits under Unit Step Input

 Circuits with monotonic response

1“
ERY Gl

- 1
T

« Easyto cRiefine delay & rise/fall time

« Commonly used definitions

— Delay T, = time to reach half-value, v(T,,, ) = 0.5V,

— Rise/fall time T,= 1V'(T,,, ) where v'(t): rate of change of v(t)
w.r.t. t

— Orrise time = time from 10% to 90% of final value

* Problem: lack of general analytical formula for T, , &
T
R




Delays of Complex Circuits under Unit Step
Input (cont'd)

 Circuits with non-monotonic response

* Much more difficult to define delay & rise/fall time




Elmore Delay for Monotonic Responses
V(Y

. 1 S

« Assumptions:

— Unit step input 03

— Monotone output response .

T50%
V(1)

« Basic idea: use of mean of v'(t)

to approximate median of v'(t) /T\

v(?) : output response (monotone) . -

median .
v'(%) : rate of change of v(7) of vy Tn=] v(0di

(T 50%) mean of v'(?)



Elmore Delay for Monotonic Responses

* T, median of v(t), since

[ v@adr=["v@ar

0

= half of final value of v(¢) (by def.)

* Elmore delay 7, = mean of v'(t)

T, = J'oo V' (2)tdt

0O



Why Elmore Delay?

Elmore delay is easier to compute analytically in most cases
— Elmore’s insight [Elmore, J. App. Phy 1948]
— Verified later on by many other researchers, e.g.
« EImore delay for RC trees [Penfield-Rubinstein, DAC’81]
« Elmore delay for RC networks with ramp input [Chan,
T-CAS’86]

For RC trees: [Krauter-Tatuianu-Willis-Pileggi, DAC’'95]

<
T50% - TD

Note: Elmore delay is not 50% value delay in general!



Elmore Delay for RC Trees

h(t) = impulse response

* Definition \
N\

— h(t) = impulse response /’\ K’

— TD = mean of h(t) H(t) = step response

* [ heo-tae / \
0 L/ >

* Interpretation VRN
— H(t) = output response (step process) Hfdf;;l 1, = [ o
of v 0
— h(t) = rate of change of H(t) (T.,) mean of v'(?)
— T...,,= median of h(t)

50%
— Elmore delay approximates the median of h(t) by

the mean of h(t)



EImore Delay of a RC Tree
[Rubinstein-Penfield-Horowitz, T-CAD’83]

Lemma: when a step input 1s applied to a RC tree

v,(¢) 1s monotonic in ¢ for every node 7 in tree
Proof: < ' (1)>0 ateverynodei (V'i(t)=h (1))
<> mmpulse response A, (1) > 0 at every node 7
Let /_._ () be the min. voltage of any node at ¢
h_. (0+)=0
Assume that 2_._(7,) <O
Then, 31, <1, st. ' (1)<O0

Apply impulse func. at t=0:

_— lvr’”'H Let nodei_ . achieve h_._(#,)at ¢,

Then, the current from any nodeitoi_ . i1s>0at#
@nt i—i Since h,(1,) > h_._(t,) &iconnects i . via resistors

- — l Since all currents i — i . charge the capacitor at7_.
. = h'_. (t,)=>=0 = contradiction




Elmore Delay in a RC Tree (cont’'d)

P :path from input tonodei; s, subtree rooted at i

th 1St R.
~— path resistance ”4'|i

R, :resistance of common path

P, P, from input to j & k

L 1 I
Theorem : Elmore delay tonodei  nput = -
T, = ZRkiCk Rjk k
1 k —
dvi (t ) T T

Proof : The current to cap. of nodei =C,

1

dt
1—v,(#) = The voltage dropon P, = ZRk -(current toall cap'sin S,)

keP,

= Z (current to cap k) -(common path res. between P, and P,)
k

dv, (1) dv, (1)
= C k R: RC k
¥, 20 g -3k, 2

T, = | v @x-dt=v, )17 =[ vt

= lim[v,(T)T - jo " (i) = lim(v,(7)=1)-7 + j: (1—v,(0)dt



Elmore Delay in a RC Tree (cont'd)

We shall show later on that lim(1-v,(7)) -7 =@.e. 1-v(T) goes to 0 at a
much faster rate than 1/T when T—~

Let  £i()=[ [1-v,(x)lx
t dv,(x) Vit area f.(t)= (:[l—vl.(x)]dx
1= [ 3 R s b, f
- ZRkiCkvk(t) K
= ZRkiCk - ZRkick (1=, ()]
fi(0) = Zsz‘Ck

()0 !

o Ty, = lim(1=v, (1) + jo“’[l —v,(1)]dt
= fi(0) = ZRkiCk



Some Definitions For Signal Bound Computation

Let 7,=> R,C, Recall 7, = > R,C,
k

k
Iy, =(ZRéCk)/Rﬁ
k
Then, Iy <T) <7, (since R, 2R, &R, 2 R)



Signal Bounds in RC Trees

* Theorem
Lower bounds
0 >0
T, .
v,(6) 2 l_t T >0 (non-trivial whent>7, —77)
) g l i
T v (Tp_TR )T tT
~1_ie PLe/r t27,-Ty
P
Upper bounds
T, —t
- D% 1>0

v, (1) <7




Delay Bounds in RC Trees

Lower bounds :
(2T, —T,[1-v,(1)]

Iy, Iy,
t21, -1, +T, In : whenv (1) 21-—
7,[1-v,)] 7,
Upper bounds :
T
f<—2 T,
l—Vl.(I) l
T, T
(<T,-T, +T,In—2 when v (1) 21-—-

T [1-v,@t)] T



Computation of ElImore Delay & Delay Bounds
in RC Trees

« Let C(T,) be total capacitance of subtree rooted at k
 Elmore delay

TDl. = ZRk -C(T},)

ke p;

upper bound :
T,=> R,-C(I})
k

lower bound :

C
T — RZ'. k
Rl Zk: R

*all three formula can be computed in linear tim e recursivel y in a bottom - up

fashion



Comments on Elmore Delay Model

* Advantages

— Simple closed-form expression
» Useful for interconnect optimization

— Upper bound of 50% delay [Gupta et al., DAC'95, TCAD’97]

» Actual delay asymptotically approaches Elmore delay as input
signal rise time increases

— High fidelity [Boese et al., ICCD’93],[Cong-He, TODAES’96]

» Good solutions under Elmore delay are good solutions under
actual (SPICE) delay



Comments on Elmore Delay Model

« Disadvantages
— Low accuracy, especially poor for slope computation

— Inherently cannot handle inductance effect
« Elmore delay is first moment of impulse response
* Need higher order moments



Chapter 7.2
Higher-order Delay Model



Time Moments of Impulse Response h(t)

* Definition of moments

h(t)—— H(s)

H(s)=| “h(t)e ™ dt = [ i h(t)[i%(—st)ijdt
0 0 .
< 1

~(=9) j h(t) 1 dt

l—O

i-th moment m. —_( 1)’ j h(t) 'dt

 Note that m, = Elmore delay when h(f) is monotone voltage response of

impulse input



Pade Approximation

H(s) can be modeled by Pade approximation of type (p/q):

A b,s” +l +bs+ b,
H, (s)=

— whereq<p<<N aqu-FM +CZ1S—|—1

Or modeled by g-th Pade approximation (g << N):

Formulate 2q constraints by matching 2g moments to compute k''s &
p;s



General Moment Matching Technique

* Basic idea: match the moments m_, . ..., m_,, my, m,, ..., m_,
. k k k
H(s)=——+—2—+l +—
S—pP1r S—P; S—P,

A A ~ r—1 r
=my+ms+0 +m_s"" +0(s")

« When r=2qg-1:

(i) initial condition matches, i.e.

h(07) = h(0"), or lim sH (s) = lim sH (s)

or (—n/>l_1 = _m_1)
(i) 71, =m, fork =00 ,2g—2
T

moments of H (s)



EQI1 —

Compute Residues & Poles

|X| ki _ ki/pi :_ﬁi(iy
s—=p, l=s/p,  pS p
ki +hky +0 4k, = h(0)= —m_—
_(£+£+m _|__q):mo
P P P,
_(k12+k22 + +—5)=m,
P P Py
I
k k
_(p12c111+p2221 +1 +p231):m2q2
q

~——

(= limsH (s))

§—>00

initial condition

— match first 2q-1 moments



Basic Steps for Moment Matching

Step 1: Compute 2qg moments m_,, m,, m., ..., Mgq.2) of H(s)
Step 2: Solve 2g non-linear equations of EQ1 to get

P> Dys8 , p, ipoles
ki kM k, residues

Step 3: Get approximate waveform

h(t) = ke™ +ke™ +1 +k e

Step 4: Increase g and repeat 1-4, if necessary, for better accuracy



Components of Moment Matching Model

« Moment computation
— lterative DC analysis on transformed equivalent DC circuit
— Recursive computation based on tree traversal
— Incremental moment computation
 Moment matching methods
— Asymptotic Waveform Evaluation (AWE) [Pillage-Rohrer, TCAD90]
— 2-pole method [Horowitz, 1984] [Gao-Zhou, ISCAS’93]...

« Moment calculation will be provided as an OPTIONAL reading



Chapter 7 Interconnect Delay

7.1 Elmore Delay
7.2 High-order model and moment matching
7.3 Stage delay calculation



Stage Delay

Source Interconnect Load

©
| —1 )

TAC — AB(]aL)'l'TBC(L)

T,5(0, L) : Gate delay without interconnect
T,;,(I,L): Gate delay with mmterconnect
T, (L): Propagation delay + Transition delay

]}nterconnect — 4L yp (19 L) o TAB (09 L) + TBC (L)




Modeling of Capacitive Load

First-order approximation: the driver sees the
total capacitance of wires and sinks

Problem: Ignore shielding effect of resistance =
pessimistic approximation as driving point
admittance

Transform interconnect circuit into a =-model

[O’'Brian-Savarino, ICCAD’89]

— Problem: cannot be easily used with most device
models

Compute effective capacitance from n-model

[Qian-Pullela-Pileggi, TCAD'94]



I1-Model
[O’Brian-Savarino, ICCAD’89]

Moment matching again!

Consider the first three moments of driving point
admittance (moments of response current caused by
an applied unit impulse)

Current in the downstream of node k

1,(5)= ¥.C,sV(s)

JeTy,

Y (s)=1,(5)/V,,(s)
Y, (s)= ZCJ.SH]. (s)

Jjely;

= ZCjS'(1+m§.1)S+m§2)Sz+M ):chj_my)sm

jel, i=l jel,



Driving-Point Admittance Approximations

 Driving-point admittance = Sum of voltage
moment-weighted subtree capacitance

=T em

JET}

Y, (s) = Zy(’) l

« Approximation of the driving point admittance at the
driver

Y(s) _
: General RC Tree:
N lumped RC elements,
- distributed RC lines




Driving-Point Admittance Approximations

» First order approximation: y(") = sum of subtree

capacitance
Y(l) (S)

—
Di C =y

+

» Second order approximation: y,®) = sum of subtree
capacitance weighted by Elmore delay




Third Order Approximation: IT Model

Y (s)
mm) R
jcfwlc
2? ? 1
(1) _ ()’
y’' =C, +C, C, = 5
) =_RC!
y L) o0 ¢

y(3) _ R2C13




Current Moment Computation

« Similar to the voltage moment computation

* [terative tree traversal:
— O(n) run-time, O(n) storage
« Bottom-up tree traversal:
— O(n) run-time

— Can achieve O(k) storage if we impose order of traversal,
k = max degree of a node

— O’Brian and Savarino used bottom-up tree traversal



Bottom-Up Moment Computation

Maintain transfer function H _ (s) for sink win subtree T , and
moment-weighted capacitance of subtree:

. | u
m;, for j=00 p, Cj for j=00 p-1 TP e CTp—l

As we merge subtrees, compute new transfer function
H _(s) and weighted capacitance recursively:

C/=m)7'C,+) m)"C],
q=0
m! =—(RC." +LC/ ) for j=10 p
New transfer function for node w

H, . ()=H,,(s)xH,_(s)

3

w

. J .

) = Zn_av’_quv for j =0l p
q=0

New moment-weighted capacitance of T :

l= > Cfforj=00 p-1

vechild (u)

A



Current Moment Computation Rule #1

Y, (s)

o

1 _ ,,1)
Yo =yp tC

Y (s) @ _ @
—> Yu =DVp

3) _ ,,03)
Yu = Vb



Current Moment Computation Rule #2

Y, (s) P
— Y, (s)
AN\— —>
v = vy

v =y -R(yy)
v =y 2RO+ R (VY



Current Moment Computation Rule #3

—

:> R Y, (s)
AN\— —>
Cv

O =304

| 1
vo' =yp =R () +C(y(”)+§C2}

y =y R 2(y<”>(y<2>> +COD) |+

R{(y(”) +—C())’ +§C2(y(”)+%C3}



Current Moment Computation Rule #4

Y, (s)

(Merging of Sub-trees)

(1) (1)
) 2 5
—>

M B Branches (2) Zy@)

% DB (s) (3) Z y(3)




AB

Example: Uniform Distributed RC Segment

AB

Purely capacitive

Wide metal (distributive)

Wide metal (lumped RC)

E—

—

Narrow metal (distribu

Narrow metal (lumped R

load" ~ ma

Wide metal (n)

Narrow metal ()
tive)



Why Effective Capacitance Model?

* The n-model is incompatible with existing empirical device
models

— Mapping of 4D empirical data is not practical from a storage

or run-time point of view

« Convert from a m-model to an effective capacitance

model for compatibility

* Equate the average current in the n-load and the C _
load

J/

T.

mn

Dﬂ Coy

+



Equating Average Currents

]71'
TIDO%@CL ‘fboﬂ C,,
n ?

1 Ip 1 Ip
” jo ()t =— jo 1.(t)dt

I(s)=Y (s)V,,(s)
] (S)_S eff out(S)

t, = time taken to reach 50% point,
not 50% point of input to 50% point of output



Waveform Approximation for V_ (t)

* Quadratic from initial voltage (Vi = VDD for falling waveform) to
20% point, linear to the 50% point

V.—ct’ 0<t<t,
Vout (1) =
a—l—b(t—tx) [ <t=t,
* Voltage waveform and first derivative are continuous at t
a=V, —ct:
b=-2ct.



Average Currents in Capacitors

1.(t) = ti[ [FCye(aendr+["C,y (—thx)dt}
i x

_—2C, e, t

]Cz(t)_ [tD__x]

* Average current of C, is not quite as simple:
— Current due to quadratic current in C,
— Current due to linear current in C,



Average Currents in C.

* Average current for (0,t ) in C,

2 "k
I (t)= ZtCl ¢ {’2 ~RCt_+ (RCl)z[l — e ﬂ

* Average current for (t ,t,) in C,

—he —Up-ty)
R
D x

—(1p—t,)
—2cthl{1— RG, [l—e RG H
tD o ZLx

7 —2C, - . 2 —(f}?(jtx) 1_;(]?
. AV@K%%%%%@G@,%)WG%HRQ) [e 'o—e ﬂ




Computation of Effective Capacitance

« Equating average currents

_(tD_tx) _tD ]
RC RC)HY | = 22
1tx 4+ ( 1)tx e RC1 . eRCl
ZLD _ 7 tx (tD _ 7)

C,=C+C|1-

* Problem: | and t are not Known a priori

« Solution: iterative computation
— Set the load capacitance equal to total capacitance
— Use table-lookup or K-factor equations to obtain t; and t

t,=t,+7, /2
t.=t,—1/2

— Equate average currents and calculate effective capacitance

— Set load capacitance equal to effective capacitance and
iterate



Stage Delay Computation

» Calculate output waveform at gate
— Using Ceff model to model interconnect

« Use the output waveform at gate as the input
waveform for interconnect tree load

* Apply interconnect reduced-order modeling technique
to obtain output waveform at receiver pins



