EE 201A (Starting 2005, called EE 201B)

Modeling and Optimization for VLSI Layout

Instructor: Lei He Email: LHE@ee.ucla.edu

Chapter 7 Interconnect Delay

- 7.1 Elmore Delay
- 7.2 High-order model and moment matching
- 7.3 Stage delay calculation

Basic Circuit Analysis Techniques

→ Network structures & state → Natural response $v_N(t)$ (zero-input response)

Output response

Input waveform & zero-states —___Forced response v_F(t) (zero-state response)

For linear circuits: $v(t) = v_N(t) + v_F(t)$

- Basic waveforms
 - Step input
 - Pulse input
 - Impulse Input
- Use simple input waveforms to understand the impact of network design

Basic Input Waveforms

Step Response vs. Impulse Response

- Definitions:
 - (unit) step input u(t) \longrightarrow (unit) step response g(t)
 - (unit) impulse input δ(t) (Unit) impulse response h(t)
 (Input Waveform) (Output Waveform)
- Relationship

$$\delta(t) = \frac{du(t)}{dt} \longrightarrow h(t) = \frac{dg(t)}{dt}$$

$$u(t) = \int_{-\infty}^{t} \delta(x) dx \quad \rightarrow \quad g(t) = \int_{0}^{t} h(x) dx$$

• Elmore delay

$$T_D = \int_0^\infty g'(t)t \cdot dt = \int_0^\infty h(t)t \cdot dt$$

Analysis of Simple RC Circuit

Analysis of Simple RC Circuit

zero-input response:

$$RC \frac{dv(t)}{dt} + v(t) = 0$$
$$\frac{1}{v(t)} \frac{dv(t)}{dt} = -\frac{1}{RC} \Longrightarrow v_N(t) = Ke^{-t/RC}$$

(natural response)

step-input response:

$$\approx RC \frac{dv(t)}{dt} + v(t) = v_0 u(t)$$
$$v_F(t) = v_0 u(t) \Longrightarrow v(t) = Ke^{-t/RC} + v_0 u(t)$$

match initial state:
$$v(0) = 0 \implies K + v_0 u(t) = 0$$

output response
for step-input: $v(t) = v_0 (1 - e^{-t/RC})u(t)$

Delays of Simple RC Circuit

- $v(t) = v_0(1 e^{-t/RC})$ under step input $v_0u(t)$
- $v(t)=0.9v_0 \Rightarrow t = 2.3RC$ $v(t)=0.5v_0 \Rightarrow t$ = 0.7RC
- Commonly used metric (Elmore delay to be defined later)

 $T_D = RC$

Lumped Capacitance Delay Model

- R = driver resistance
- C = total interconnect capacitance + loading capacitance
- Sink Delay: $t_d = R \cdot C$

- 50% delay under step input = 0.7RC
- Valid when driver resistance >> interconnect resistance
- All sinks have equal delay

Lumped RC Delay Model

$$t_{D} = R_{d} \cdot C_{load} = R_{d} \cdot (C_{int} + C_{g})$$
$$= R_{d} \cdot (C_{0} \cdot L + C_{g})$$

• Minimize delay ⇔ minimize wire length

Delay of Distributed RC Lines

Step response of distributed and lumped RC networks. A potential step is applied at V_{IN} , and the resulting V_{OUT} is plotted. The time delays between commonly used reference points in the output potential is also tabulated.

Delay of Distributed RC Lines (cont'd)

Output potential range	Time elapsed (Distributed RC Network)	Time elapsed (Lumped RC Network)
0 to 90%	1.0 <i>RC</i>	2.3 RC
10% to 90% (rise time)	0.9 <i>RC</i>	2.2 <i>RC</i>
0 to 63%	0.5 <i>RC</i>	1.0 <i>RC</i>
0 to 50% (delay)	0.4 <i>RC</i>	0.7 <i>RC</i>
0 to 10%	0.1 <i>RC</i>	0.1 <i>RC</i>

Distributed Interconnect Models

- Distributed RC circuit model
 - L,T or Π circuits
- Distributed RCL circuit model
- Tree of transmission lines

Distributed RC Circuit Models

Delays of Complex Circuits under Unit Step Input

Circuits with monotonic response

- Easy to define delay & rise/fall time
- Commonly used definitions
 - Delay $T_{50\%}$ = time to reach half-value, $v(T_{50\%}) = 0.5V_{dd}$
 - Rise/fall time $T_R = 1/v'(T_{50\%})$ where v'(t): rate of change of v(t) w.r.t. t
 - Or rise time = time from 10% to 90% of final value
- Problem: lack of <u>general</u> analytical formula for $T_{50\%}$ & $T_R!$

Delays of Complex Circuits under Unit Step Input (cont'd)

Circuits with non-monotonic response

• Much more difficult to define delay & rise/fall time

Elmore Delay for Monotonic Responses

- Assumptions:
 - Unit step input
 - Monotone output response
- Basic idea: use of mean of v'(t) to approximate median of v'(t)

v(t): output response (monotone) v'(t): rate of change of v(t)

Elmore Delay for Monotonic Responses

• $T_{50\%}$: median of v'(t), since

$$\int_0^{T_{50\%}} v'(t)dt = \int_{T_{50\%}}^{+\infty} v'(t)dt$$

= half of final value of $v(t)$ (by def.)

• Elmore delay T_D = mean of v'(t)

$$T_D = \int_0^\infty v'(t) t dt$$

Why Elmore Delay?

- Elmore delay is easier to compute analytically in most cases
 - Elmore's insight [Elmore, J. App. Phy 1948]
 - Verified later on by many other researchers, e.g.
 - Elmore delay for RC trees [Penfield-Rubinstein, DAC'81]
 - Elmore delay for RC networks with ramp input [Chan, T-CAS'86]
 - •
- For RC trees: [Krauter-Tatuianu-Willis-Pileggi, DAC'95] $T_{50\%} \leq T_{D}$
- Note: Elmore delay is not 50% value delay in general!

Elmore Delay for RC Trees

- h(t) = impulse responseDefinition ullet- h(t) = impulse response $-T_{D}$ = mean of h(t) H(t) = step response $h(t) \cdot t dt$ Interpretation median H(t) = output response (step process) $T_D = \int_0^\infty t v'(t) dt$ of v'(t)- h(t) = rate of change of H(t) mean of v'(t) $(T_{50\%})$ - $T_{50\%}$ = median of h(t)
 - Elmore delay approximates the median of h(t) by the mean of h(t)

Elmore Delay of a RC Tree

[Rubinstein-Penfield-Horowitz, T-CAD'83]

when a step input is applied to a RC tree Lemma: $v_i(t)$ is monotonic in t for every node i in tree **Proof:** $\Leftrightarrow v'_i(t) \ge 0$ at every node i $(v'i(t) = h_i(t))$ \Leftrightarrow impulse response $h_i(t) \ge 0$ at every node *i* Let $h_{\min}(t)$ be the min. voltage of any node at t $h_{\min}(0+) \ge 0$ Assume that $h_{\min}(t_0) < 0$ Then, $\exists t_1 < t_0$ s.t. $h'_{\min}(t_1) < 0$ Let node i_{\min} achieve $h_{\min}(t_1)$ at t_1 Then, the current from any node *i* to i_{\min} is ≥ 0 at t_1 Since $h_i(t_1) \ge h_{\min}(t_1)$ & *i* connects i_{\min} via resistors Since all currents $i \rightarrow i_{\min}$ charge the capacitor at i_{\min} $h'_{\min}(t_1) \ge 0 \implies \text{contradict ion!}$

Elmore Delay in a RC Tree (cont'd)

Elmore Delay in a RC Tree (cont'd)

• We shall show later on that $\lim_{T\to\infty} (1-v_i(T)) \cdot T = \emptyset$.e. $1-v_i(T)$ goes to 0 at a much faster rate than 1/T when $T\to\infty$

• Let
$$f_{i}(t) = \int_{0}^{t} [1 - v_{i}(x)] dx$$

$$f_{i}(t) = \int_{0}^{t} \sum_{k} R_{ki}C_{k} \frac{dv_{k}(x)}{dx} dx$$

$$= \sum_{k} R_{ki}C_{k}v_{k}(t)$$

$$= \sum_{k} R_{ki}C_{k} - \sum_{k} R_{ki}C_{k}[1 - v_{k}(t)]$$

$$f_{i}(\infty) = \sum_{k} R_{ki}C_{k}$$

$$\therefore T_{D_{i}} = \lim_{T \to \infty} (1 - v_{i}(T))T + \int_{0}^{\infty} [1 - v_{i}(t)] dt$$

$$= f_{i}(\infty) = \sum_{k} R_{ki}C_{k}$$

Some Definitions For Signal Bound Computation

Let
$$T_p = \sum_k R_{kk} C_k$$

 $T_{R_i} = \left(\sum_k R_{ki}^2 C_k\right) / R_{ii}$
Then, $T_{R_i} \le T_{D_i} \le T_p$

Recall
$$T_{D_i} = \sum_k R_{ki} C_k$$

(since
$$R_{kk} \ge R_{ki} \& R_{ii} \ge R_{ki}$$
)

Signal Bounds in RC Trees

• Theorem

$$v_{i}(t) \geq \begin{bmatrix} 0 & t \geq 0 \\ 1 - \frac{T_{D_{i}}}{t + T_{R_{i}}} & t \geq 0 \\ 1 - \frac{T_{D_{i}}}{t + T_{R_{i}}} & t \geq 0 \\ 1 - \frac{T_{D_{i}}}{T_{p}} e^{(T_{p} - T_{R_{i}})/T_{p}} \cdot e^{-t/T_{p}} & t \geq T_{p} - T_{R_{i}} \end{bmatrix}$$

Upper bounds

$$\begin{bmatrix}
1 - \frac{T_{D_i} - t}{T_p} & t \ge 0 \\
\\
 & t \ge 0 \\
\end{bmatrix}$$

$$v_i(t) \le \begin{bmatrix}
1 - \frac{T_{R_i}}{T_p} & t \ge 0 \\
1 - \frac{T_{R_i}}{T_p} e^{(T_{D_i} - T_{R_i})/T_{R_i}} & t \ge T_{D_i} - T_{R_i}
\end{bmatrix}$$

Delay Bounds in RC Trees

Lower bounds :

$$t \ge T_{D_{i}} - T_{p} \left[1 - v_{i}(t) \right]$$

$$t \ge T_{D_{i}} - T_{R_{i}} + T_{R_{i}} \ln \frac{T_{R_{i}}}{T_{p} \left[1 - v_{i}(t) \right]} \qquad \text{when } v_{i}(t) \ge 1 - \frac{T_{R_{i}}}{T_{p}}$$

Upper bounds :

$$t \le \frac{T_{D_i}}{1 - v_i(t)} - T_{R_i}$$

$$t \le T_p - T_{R_i} + T_p \ln \frac{T_{D_i}}{T_p [1 - v_i(t)]}$$

when
$$v_i(t) \ge 1 - \frac{T_{D_i}}{T_p}$$

Computation of Elmore Delay & Delay Bounds in RC Trees

- Let $C(T_k)$ be total capacitance of subtree rooted at k
- Elmore delay

$$T_{D_i} = \sum_{k \in p_i} R_k \cdot C(T_k)$$

upper bound :

$$T_p = \sum_k R_k \cdot C(T_k)$$

lower bound :

$$T_{R_i} = \sum_k R_{ki}^2 \cdot \frac{C_k}{R_{ii}}$$

* all three formula can be computed in linear time recursively in a bottom - up fashion

Comments on Elmore Delay Model

- Advantages
 - Simple closed-form expression
 - Useful for interconnect optimization
 - Upper bound of 50% delay [Gupta et al., DAC'95, TCAD'97]
 - Actual delay asymptotically approaches Elmore delay as input signal rise time increases
 - High fidelity [Boese et al., ICCD'93],[Cong-He, TODAES'96]
 - Good solutions under Elmore delay are good solutions under actual (SPICE) delay

Comments on Elmore Delay Model

- Disadvantages
 - Low accuracy, especially poor for slope computation
 - Inherently cannot handle inductance effect
 - Elmore delay is first moment of impulse response
 - Need higher order moments

Chapter 7.2 Higher-order Delay Model

Time Moments of Impulse Response *h*(*t*)

• Definition of moments

$$h(t) \xrightarrow{L} H(s)$$

$$H(s) = \int_{0}^{\infty} h(t)e^{-st} dt = \int_{0}^{\infty} h(t) \left(\sum_{i=0}^{\infty} \frac{1}{i!}(-st)^{i}\right) dt$$

$$= \sum_{i=0}^{\infty} \frac{1}{i!}(-s)^{i} \int_{0}^{\infty} h(t) t^{i} dt$$
i-th moment
$$m_{i} = \frac{1}{i!}(-1)^{i} \int_{0}^{\infty} h(t) t^{i} dt$$

 Note that m₁ = Elmore delay when h(t) is monotone voltage response of impulse input

Pade Approximation

• H(s) can be modeled by Pade approximation of type (p/q):

$$\hat{H}_{p,q}(s) = \frac{b_p s^p + \mathbb{X} + b_1 s + b_0}{a_q s^q + \mathbb{X} + a_1 s + 1}$$

• Or modeled by *q*-th Pade approximation ($q \ll N$):

$$\hat{H}_{q}(s) \equiv \hat{H}_{q-1,q}(s) = \sum_{j=1}^{q} \frac{k_{j}}{s - p_{j}}$$

Formulate 2q constraints by matching 2q moments to compute k_i's & p_i's

General Moment Matching Technique

• Basic idea: match the moments $m_{-(2q-r)}, \dots, m_{-1}, m_0, m_1, \dots, m_{r-1}$

$$\hat{H}(s) = \frac{k_1}{s - p_1} + \frac{k_2}{s - p_2} + \mathbb{X} + \frac{k_q}{s - p_q}$$
$$= \hat{m}_0 + \hat{m}_1 s + \mathbb{X} + \hat{m}_{r-1} s^{r-1} + O(s^r)$$

• When *r* = 2*q*-1:

(i) initial condition matches, i.e.

$$\hat{h}(0^{+}) = h(0^{+}), \text{ or } \lim_{s \to \infty} s\hat{H}(s) = \lim_{s \to \infty} sH(s)$$

or $(-\hat{m}_{-1} = -m_{-1})$
(ii) $\hat{m}_{k} = m_{k}$ for $k = 0,1, \mathbb{X}$, $2q - 2$
 \uparrow
moments of $\hat{H}(s)$

Compute Residues & Poles

$$\bigotimes_{i=1}^{k_{i}} \frac{k_{i}}{s-p_{i}} = -\frac{k_{i}/p_{i}}{1-s/p_{i}} = -\frac{k_{i}}{p_{i}} \sum_{j=0}^{\infty} (\frac{s}{p_{i}})^{j}$$

$$\stackrel{\bullet}{\bullet} \frac{k_{1}+k_{2}+\boxtimes_{i}+k_{q}}{k_{1}+k_{2}+\boxtimes_{i}+k_{q}} = h(0) = -m_{-1} \leftarrow \frac{(=\lim_{s \to \infty} s\hat{H}(s))}{\text{initial condition}}$$

$$-(\frac{k_{1}}{p_{1}} + \frac{k_{2}}{p_{2}} + \boxtimes_{i} + \frac{k_{q}}{p_{q}}) = m_{0}$$

$$-(\frac{k_{1}}{p_{1}^{2}} + \frac{k_{2}}{p_{2}^{2}} + \boxtimes_{i} + \frac{k_{q}}{p_{q}^{2}}) = m_{1}$$

$$= -(\frac{k_{1}}{p_{1}^{2q-1}} + \frac{k_{2}}{p_{2}^{2q-1}} + \boxtimes_{i} + \frac{k_{q}}{p_{q}^{2q-1}}) = m_{2q-2}$$

$$= match \text{ first } 2q-1 \text{ moments}$$

Basic Steps for Moment Matching

Step 1: Compute 2*q* moments m_{-1} , m_0 , m_1 , ..., $m_{(2q-2)}$ of H(s)**Step 2:** Solve 2*q* non-linear equations of EQ1 to get

$$p_1, p_2, \mathbb{X}$$
, p_q : poles
 k_1, k_2, \mathbb{X} , k_q : residues

Step 3: Get approximate waveform

$$\hat{h}(t) = k_1 e^{p_1 t} + k_2 e^{p_2 t} + \mathbb{Z} + k_q e^{p_q t}$$

Step 4: Increase *q* and repeat 1-4, if necessary, for better accuracy

Components of Moment Matching Model

- Moment computation
 - Iterative DC analysis on transformed equivalent DC circuit
 - Recursive computation based on tree traversal
 - Incremental moment computation
- Moment matching methods
 - Asymptotic Waveform Evaluation (AWE) [Pillage-Rohrer, TCAD'90]
 - 2-pole method [Horowitz, 1984] [Gao-Zhou, ISCAS'93]...
- Moment calculation will be provided as an OPTIONAL reading

Chapter 7 Interconnect Delay

- 7.1 Elmore Delay
- 7.2 High-order model and moment matching
- 7.3 Stage delay calculation

Stage Delay

 $T_{AC} = T_{AB}(I,L) + T_{BC}(L)$

 $T_{AB}(0,L)$: Gate delay without interconnect $T_{AB}(I,L)$: Gate delay with interconnect $T_{BC}(L)$: Propagation delay + Transition delay

$$T_{Interconnect} = T_{AB}(I,L) - T_{AB}(0,L) + T_{BC}(L)$$

Modeling of Capacitive Load

- First-order approximation: the driver sees the total capacitance of wires and sinks
- Problem: Ignore shielding effect of resistance ⇒ pessimistic approximation as driving point admittance
- Transform interconnect circuit into a π-model [O'Brian-Savarino, ICCAD'89]
 - Problem: cannot be easily used with most device models
- Compute effective capacitance from π-model [Qian-Pullela-Pileggi, TCAD'94]

П-Model [O'Brian-Savarino, ICCAD'89]

- Moment matching again!
- Consider the first three moments of driving point admittance (moments of response current caused by an applied unit impulse)
- Current in the downstream of node k

$$I_{k}(s) = \sum_{j \in T_{k}} C_{j} s V_{j}(s)$$

$$Y_{k}(s) = I_{k}(s) / V_{in}(s)$$

$$Y_{k}(s) = \sum_{j \in T_{k}} C_{j} s H_{j}(s)$$

$$= \sum_{j \in T_{k}} C_{j} s \cdot (1 + m_{j}^{(1)} s + m_{j}^{(2)} s^{2} + \mathbb{X}) = \sum_{i=1}^{\infty} \sum_{j \in T_{k}} C_{j} m_{j}^{(i)} s^{i+1}$$

Driving-Point Admittance Approximations

 Driving-point admittance = Sum of voltage moment-weighted subtree capacitance

$$y_{k}^{(i)} = \sum_{j \in T_{k}} C_{j} m_{j}^{(i-1)}$$
$$Y_{k}(s) = \sum_{i=1}^{\infty} y_{k}^{(i)} s^{i}$$

Approximation of the driving point admittance at the driver

General RC Tree: lumped RC elements, distributed RC lines

Driving-Point Admittance Approximations

- First order approximation: $y^{(1)} = \text{sum of subtree}$ capacitance $Y^{(1)}(s)$
- Second order approximation: $y_k^{(2)} = sum of subtree capacitance weighted by Elmore delay$

$$\begin{array}{c}
Y^{(2)}(s) \\
R = -y^{(2)} / (y^{(1)})^{2} \\
\hline
C = y^{(1)} \\
\hline
\end{array}$$

Third Order Approximation: Π Model

Current Moment Computation

- Similar to the voltage moment computation
- Iterative tree traversal:
 - O(n) run-time, O(n) storage
- Bottom-up tree traversal:
 - O(n) run-time
 - Can achieve O(k) storage if we impose order of traversal,
 k = max degree of a node
 - O'Brian and Savarino used bottom-up tree traversal

Bottom-Up Moment Computation

 $\overline{m}_{u}^{p} \nearrow \overline{C}_{T_{u}}^{p-1}$

 m_v^p

 m^p –

W

• Maintain transfer function $H_{v \sim w}(s)$ for sink *w* in subtree T_v , and moment-weighted capacitance of subtree:

 m_w^j for $j = 0 \boxtimes p$, $C_{T_v}^j$ for $j = 0 \boxtimes p-1$

• As we merge subtrees, compute new transfer function $H_{u \sim v}(s)$ and weighted capacitance recursively: i^{j-1} R_v, L_v, C_v

$$\overline{C}_{T_v}^{j-1} = \overline{m}_v^{j-1}C_v + \sum_{q=0}^{j-1} \overline{m}_v^{j-1-q}C_{T_v}^q,$$

$$\overline{m}_v^j = -(R_v \overline{C}_{T_v}^{j-1} + L_v \overline{C}_{T_v}^{j-2}) \text{ for } j = 1 \mathbb{Z} \quad p$$

• New transfer function for node w

$$\overline{H}_{u \sim w}(s) = \overline{H}_{u \sim v}(s) \times H_{v \sim w}(s)$$
$$\overline{m}_{w}^{j} = \sum_{q=0}^{j} \overline{m}_{v}^{j-q} m_{w}^{q} \text{ for } j = 0 \mathbb{Z} p$$

• New moment-weighted capacitance of T_{μ} :

$$\overline{C}_{T_u}^{j} = \sum_{v \in child(u)} \overline{C}_{T_v}^{j} \text{ for } j = 0 \mathbb{Z} \quad p-1$$

Current Moment Computation Rule #1

Current Moment Computation Rule #2

$$y_U^{(1)} = y_D^{(1)}$$

$$y_U^{(2)} = y_D^{(2)} - R(y_D^{(1)})^2$$

$$y_U^{(3)} = y_D^{(3)} - 2R(y_D^{(1)})(y_D^{(2)}) + R^2(y_D^{(1)})^3$$

Current Moment Computation Rule #3

$$y_{U}^{(1)} = y_{D}^{(1)} + C$$

$$y_{U}^{(2)} = y_{D}^{(2)} - R \left[(y_{D}^{(1)})^{2} + C(y_{D}^{(1)}) + \frac{1}{3}C^{2} \right]$$

$$y_{U}^{(3)} = y_{D}^{(3)} - R \left[2(y_{D}^{(1)})(y_{D}^{(2)}) + C(y_{D}^{(2)}) \right] + R^{2} \left[(y_{D}^{(1)})^{3} + \frac{4}{3}C(y_{D}^{(1)})^{2} + \frac{2}{3}C^{2}(y_{D}^{(1)}) + \frac{2}{15}C^{3} \right]$$

Current Moment Computation Rule #4 (Merging of Sub-trees)

Example: Uniform Distributed RC Segment

Why Effective Capacitance Model?

- The π -model is incompatible with existing empirical device models
 - Mapping of 4D empirical data is not practical from a storage or run-time point of view
- Convert from a π -model to an effective capacitance model for compatibility
- Equate the average current in the $\pi\text{-load}$ and the C_{eff} load

Equating Average Currents

 t_D = time taken to reach 50% point, not 50% point of input to 50% point of output

Waveform Approximation for $V_{out}(t)$

 Quadratic from initial voltage (Vi = VDD for falling waveform) to 20% point, linear to the 50% point

$$V_{out}(t) = \begin{cases} V_i - ct^2 & 0 \le t \le t_x \\ a + b(t - t_x) & t_x \le t \le t_D \end{cases}$$

Voltage waveform and first derivative are continuous at t_x

$$a = V_i - ct_x^2$$
$$b = -2ct_x$$

Average Currents in Capacitors

$$\bar{I}_{C}(t) = \frac{1}{t_{D}} \left[\int_{0}^{t_{x}} C_{eff} \cdot (-2ct) dt + \int_{t_{x}}^{t_{D}} C_{eff} \cdot (-2ct_{x}) dt \right]$$
$$= \frac{-2C_{eff} \cdot c \cdot t_{x}}{t_{D}} [t_{D} - \frac{t_{x}}{2}]$$
$$\bar{I}_{C_{2}}(t) = \frac{-2C_{2} \cdot c \cdot t_{x}}{t_{D}} [t_{D} - \frac{t_{x}}{2}]$$

- Average current of C₁ is not quite as simple:
 - Current due to quadratic current in C_2
 - Current due to linear current in C_2

Average Currents in C₁

• Average current for $(0,t_x)$ in C_2

$$\bar{I}_{C_1}(t) = \frac{-2C_1 \cdot c}{t_x} \left[\frac{t_x^2}{2} - RC_1 t_x + (RC_1)^2 \left(1 - e^{\frac{-t_x}{RC_1}} \right) \right]$$

• Average current for (t_x, t_D) in C_2

$$\bar{I}_{C_{1}}(t) = \frac{-C_{1} \cdot c}{t_{D} - t_{x}} \left[2RC_{1}t_{x} - 2(RC_{1})^{2} \left(1 - e^{\frac{-t_{x}}{RC_{1}}}\right) \right] \left(1 - e^{\frac{-(t_{D} - t_{x})}{RC_{1}}}\right) - 2ct_{x}C_{1} \left[1 - \frac{RC_{1}}{t_{D} - t_{x}} \left(1 - e^{\frac{-(t_{D} - t_{x})}{RC_{1}}}\right) \right]$$

• Average
$$-2C_1 \cdot c \begin{bmatrix} t_x^2 \\ t_D \end{bmatrix} + (RC_1)^2 \left(e^{\frac{-(t_D - t_x)}{RC_1}} - e^{\frac{-t_D}{RC_1}} \right) \end{bmatrix}$$

Computation of Effective Capacitance

Equating average currents

$$C_{eff} = C_2 + C_1 \left[1 - \frac{RC_1}{t_D - \frac{t_x}{2}} + \frac{(RC_1)^2}{t_x(t_D - \frac{t_x}{2})} \left(e^{\frac{-(t_D - t_x)}{RC_1}} - e^{\frac{-t_D}{RC_1}} \right) \right]$$

- Problem: t_D and t_x are not known a priori
- Solution: iterative computation
 - Set the load capacitance equal to total capacitance
 - Use table-lookup or K-factor equations to obtain t_{D} and t_{x}

$$t_D = t_d + \tau_{in} / 2$$
$$t_x = t_D - \tau / 2$$

- Equate average currents and calculate effective capacitance
- Set load capacitance equal to effective capacitance and iterate

Stage Delay Computation

- Calculate output waveform at gate
 - Using Ceff model to model interconnect
- Use the output waveform at gate as the input waveform for interconnect tree load
- Apply interconnect reduced-order modeling technique to obtain output waveform at receiver pins