ЛЕКЦИЯ № 17

Тема: Интерфейсы микропроцессорных систем. Способы использования микропроцессорных систем в радиоэлектронных устройствах

Текст лекции по дисциплине «Цифровые устройства и микропроцессоры»

УЧЕБНЫЕ ВОПРОСЫ:

- 1. Интерфейсы микропроцессоров.
- 2. Интерфейсные БИС.
- 3. Проектирование микроконтроллеров и микропроцессоров

ЛИТЕРАТУРА:

Основная литература

Л1. А.К.Нарышкин «Цифровые устройств и микропроцессоры»: учеб. пособие для студ. Высш. Учебн. Заведений/ А. К. Нарышкин, 2 – е изд. - Издательский центр «Академия», 2008г. с. 264-267

Дополнительная литература

Контрольные вопросы

Варианты:

- 1. Нарисовать УГО ОЗУ.
- 2.Состав ОЗУ
- 3. Нарисовать УГО ПЗУ.
- 4.Состав ПЗУ

1. Интерфейсы микропроцессоров

Общие понятия и определения

При работе МК и МП различают внутренний и внешний обмен информацией.

При *внутреннем* обмене данные передаются из постоянной или оперативной памяти в МП, а результаты вычислений передаются из МП в оперативную память.

Внешний обмен предполагает передачу информации между внешними источниками или потребителями информации (УВВ), с одной стороны, и МП или оперативной памятью с другой стороны.

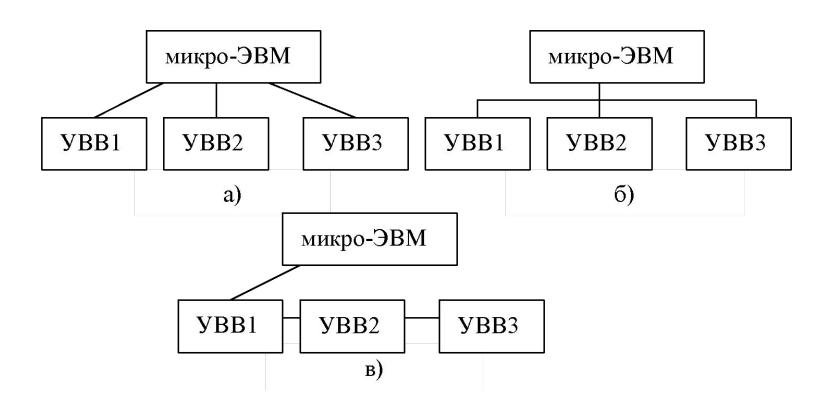
Задача обмена информацией возлагается на унифицированные системы сопряжения — интерфейсы

Интерфейс — совокупность унифицированных аппаратурных, программных и конструктивных средств, необходимых для реализации взаимодействия различных функциональных элементов в автоматических системах сбора и обработки информации. 5

- 1. По функциональному признаку
- внутренний интерфейс;
- внешний интерфейс;
- По структуре МП выполняются, как правило, с одним общим *внутренним* интерфейсом, т.е. с одной общей шины, к которой подсоединяются все узлы и блоки МП.
- В каждый момент времени через общую шину может происходить обмен данными только между одной парой подключенных к ней узлов и блоков МП и только после получения соответствующего сигнала от схем управления.

Количество линий в общей шине для передачи данных называется информационной шириной интерфейса.

Внешний интерфейс предполагает передачу информации между внешними источниками или потребителями информации (УВВ), с одной стороны, и МП или оперативной памятью с другой стороны.


- 2. По способу передачи информации,
- -последовательные интерфейсы;
- -параллельные интерфейсы;
- -параллельно-последовательный.

Последовательные интерфейсы служат для последовательной передачи информации по двухпроводной линии.

Параллельные интерфейсы позволяют передавать всю или часть информации по многопроводной линии.

Параллельные интерфейсы имеют значительно более высокое быстродействие по сравнению с последовательными, но требуют для своей реализации существенных аппаратурных затрат.

- 3. По способу подключения устройств друг к другу,
- радиальные интерфейсы
- магистральные интерфейсы
- цепочечные интерфейсы
- комбинированные (смешанные) интерфейсы

- радиальные интерфейсы

- Используются индивидуальные для каждого УВВ линии, по которым производится передача только между этим УВВ и микро-ЭВМ (МП, МК).
- Все операции по управлению и коммутации осуществляются микро-ЭВМ, с помощью интерфейсных блоков по одному для каждого ПУ.
- Все УВВ работают независимо друг от друга и могут передавать информацию в любой момент времени.
- Очередность приема информации из буферных регистров определяется МП микро-ЭВМ.
- **Достоинством** является относительная конструктивная простота при подключении к нему УВВ.
- **Недостамком является** увеличение количества линий связи и соответственно усилительных элементов.

- магистральные интерфейсы

- Используются общие линии для всех УВВ и разделение во времени информационных сигналов. Сигнал на любой линии доступен одновременно всем подключенным к ней устройствам.
- Всем УВВ присваиваются собственные адреса (номера портов).
- Каждое УВВ производит сравнение передаваемого и собственного адресов. При их совпадении выдается сигнал готовности УВВ к обмену. Эта процедура называется адресацией. Остальные УВВ принимать последующие сообщения не будут.

Достоинство - передача адреса и данных занимает мало времени, так как сигналы доступны всем устройствам.

- цепочечные интерфейсы

Здесь передаче данных от УВВ предшествует передача адреса, однако этот адрес последовательно проходит через все УВВ. Процедура адресации занимает больше времени, чем в радиальных интерфейсах, однако здесь не требуется последовательный перебор всех адресов. Получив сигнал запроса от УВВ, микро-ЭВМ выдает сигнал опроса, который последовательно проходит через все УВВ. Если УВВ готово к передаче сообщения, то дальнейшее прохождение сигнала опроса блокируется, а это УВВ получает разрешение на передачу сообщения.

Недостаток - требуется последовательный перебор всех адресов.

- 4. По принципу обмена информацией,
- синхронный интерфейс;
- асинхронный интерфейс;
- полуасинхронный.

В синхронном интерфейсе сигнал на линиях передающего устройства присутствует в течении заранее установленного постоянного интервала времени. Эти моменты синхронизируются специальными синхронизирующими сигналами.

В асинхронном интерфейсе синхронизация работы УВВ и микро-ЭВМ осуществляется только на одном цикле приема-передачи. Для этого используется либо специальные стартовые и стоповые сигналы, либо специальные линии. Асинхронная передача происходит при условии подтверждения приемником готовности к приему и завершается подтверждением о приеме данных.

Классификация интерфейсов 5. По режиму передачи информации.

- симплексный (однонаправленный);
- полудуплексный интерфейс;
- дуплексный (двунаправленные);
- мультиплексный.
- Симплексный интерфейс служит для передачи сигналов в одном направлении.
- При полудуплексном интерфейсе может передавать информацию каждое из двух взаимодействующих устройств, но в любой момент времени одно из них передаёт информацию, а другое принимает.
- Дуплексный интерфейс позволяет передавать сигналы в обоих направлениях в произвольный момент времени, т.е. существует два независимых канала для передачи информации.
- Мультиплексный интерфейс связывает несколько абонентов. При этом, в каждый момент времени передача информации может быть осуществлена между любой парой абонентов в любом, но в 13 единственном направлении от одного абонента к другому.

Общие понятия и определения

Интерфейс *служим* для обеспечении информационной, электрической и конструктивной совместимости между функциональными элементами системы

Информационную совместимость — это согласованность взаимодействий функциональных элементов в соответствии с совокупностью логических условий.

Электрическую совместимость — это согласованность статических и динамических параметров электрических сигналов в системе шин с учетом ограничений на пространственное размещение устройств интерфейса и техническую реализацию приемно-передающих элементов.

Конструктивная совместимость — это согласованность конструктивных элементов интерфейса, предназначенных для обеспечения механического контакта электрических соединений и механической замены схемных элементов, блоков и устройств. 14

Составные физические элементы

Составными физическими элементами связей интерфейса являются:

1. Электрические цепи - <u>линии интерфейса</u>. Часть линий, сгруппированных по функциональному назначению, называется <u>шиной</u>, а вся совокупность линий—<u>магистралью</u>.

Различают:

- магистраль информационного канала (передаются коды данных, адресов, команд и состояний устройств. Соответствующим шинам интерфейса присваивают наименования шина данных, адресов, команд и т.д.)
- магистраль управления информационным каналом.
- 2. Интерфейсные БИС,

Вывод по 1 вопросу

1. Интерфейс — совокупность унифицированных аппаратурных, программных и конструктивных средств, необходимых для реализации взаимодействия различных функциональных элементов в автоматических системах сбора и обработки информации.

2. Интерфейсные БИС

Общие понятия и определения

Интерфейсные БИС - БИС, предназначенные для реализации системных шин

Шинные формирователи

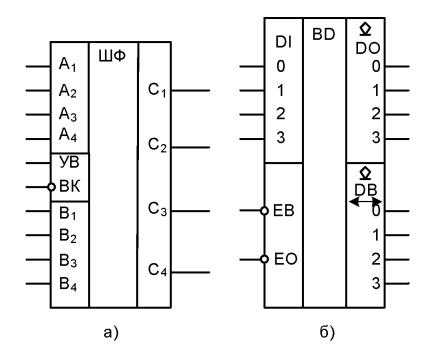
Магистральные (шинные) приемопередающие

формирователи - это специализированные цифровые устройства, предназначенные для согласования входов-выходов других цифровых устройств в узлах передачи данных и для управления направлением передачи данных в шинах.

Назначение

- 1. Усиление сигналов по мощности при работе на шину,
- 2. Отключение источника информации от шины, когда он не участвует в обмене
- 3. Передачи параллельного кода через одну магистраль в р азных направлениях

Включаются между источником информации и шиной.

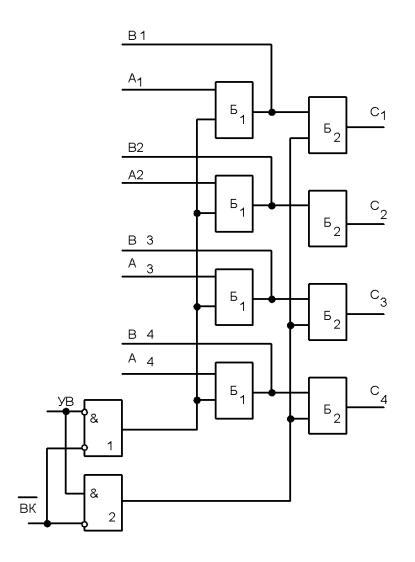

Классификация ШФ

- 1. По направлению передачи информации:
- однонаправленные шинные драйверы (здесь данные передаются в одном направлении, т. е. определенные выводы микросхемы являются входными и определенные выходными);
- двунаправленные шинные драйверы (здесь одни и те же выходы могут быть как входными, так и выходными).

Устройство ШФ

Шинные формирователи имеют три *п*-разрядных канала A, B, C. Канал A (DI) предназначен только для приема информации, канал B — для приема информации с выдачей ее в канал C (DO) либо для выдачи информации, принятой через канал A. Кроме того, в состав схемы входят специальные буферные устройства, которые служат для разрешения или запрета передачи через них информации, и логические элементы, играющие управляющую роль.

УГО ШФ

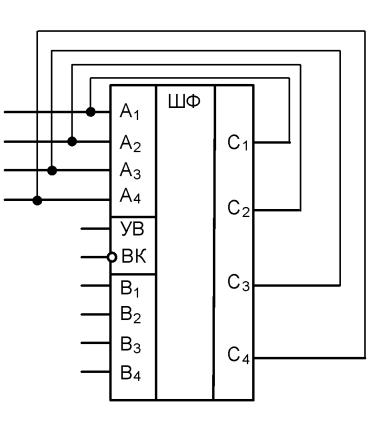


Маркировка

К589АП16, (рис. а) и ИМС типа КР531АП2 (рис. б).

На рисунках: вход ВК (ЕВ) — вход выборки кристалла, выходы $C_1...C_4$ (DO) - выходы информации, $B_1...B_4$ (DB) — Входы/выходы реверсивной передачи, $A_1...A_4$ (DI) — входы информации, УВ (ЕО) — вход управления выдачей.

Схема ШФ. Работа ШФ


В состав входят:

- 1. буферные устройства \mathbf{F}_{1} , \mathbf{F}_{2}
- 2. двухвходовые элементы И с инверсными входами.

Работа:

- 1. ВК = 1 на выходах И1 и И2 0. \mathbf{F}_1 и \mathbf{F}_2 закрыты, информация через ШФ не передается.
- 2. BK = 0
- если УВ = 0, происходит передача от входа A к выходу B (открыты буферы E_1 , буферы E_2 закрыты);
- УВ = 1 происходит передача от входа В к выходу С (открыты буферы \mathbf{F}_2 , буферы \mathbf{F}_1 закрыты).

Работа ШФ

- 3. При объединении выводов A и C, ШФ обеспечивает управляемую передачу в два направления.
- УВ=0, то передача осуществляется в направлении от входа А к выходу В (выходы С отключены);
- УВ=1, то передача осуществляется в обратном направлении от входа В к выходу С.
- 4. ШФ могут иметь третье состояние выходов (состояние высокого импеданса Z) и открытый коллекторный выход (ОК).

Параллельные периферийные адаптеры

ШФ осуществляют передачу данных между МП и шиной данных. Более сложные операции выполняются **периферийными адаптерами**.

Особенность:

1. Программируемость (обеспечивает изменяемость процедур обмена без изменений в схеме (с помощью команд программы))

Пример базовой схемы - Intel 8255A, (К580ВВ55А). однокристальные устройства параллельного ввода/вывода и обеспечивают двунаправленный обмен

Программируемые связные адаптеры

Служат для преобразования параллельных данных в последовательные для их передачи по одной сигнальной линии.

Тракт передачи последовательных данных включает в себя источник и приемник данных, программируемые связные адаптеры (ПСА) и модемы.

Пример базовой схемы - Intel 8251A (К580ВВ51А). Этот ПСА называют универсальный синхронно-асинхронный приёмопередатчик.

Модемы (модуляторы-демодуляторы) преобразуют двоичный сигнал в некоторый аналоговый модулированный сигнал, приспособленный к передаче по узкополосным телефонным линиям. Модемы, как правило, выполняют в виде отдельных устройств и узлов.

Программируемые контроллеры прерываний

Служат для прерывания выполняемых программ и перехода к обслуживанию запросов прерывания.

- Простейшими базовыми схемами являются блоки приоритетного прерывания (Intel 8214, К589ИК14 и др.). Эти блоки решают несложные задачи обработки нескольких векторных прерываний при фиксированных приоритетах запросов.
- Более сложные задачи решаются программируемыми контроллерами прерываний (ПКП), в частности ИС Intel 8259A, К1810ВН59. Непосредственно реализуют прерывания с обработкой до 8 запросов. С помощью нескольких ПКП легко организуются устройства обработки до 64 запросов и т.д.

Программируемые интервальные таймеры

- Программируемые интервальные таймеры (ПИТ, PIT) выполняют операции, связанные с временами, частотами и интервалами.
- Пример К1821ВИ54 и К1860ВИ54 (аналог микросхемы Intel 8254), входящий также в состав современных интегрированных периферийных СБИС и библиотек для СБИС программируемой логики, трехканальный, содержит три 16-разрядных счетчика с независимыми режимами работы при изменениях входной частоты

Буферные регистры

Служат для подключения к магистрали внешнего устройства и способны хранить данные. Выполняют временную буферизацию данных.

Через порты ввода данные от ВУ поступают в магистраль, а через порты вывода данные с магистрали передаются тому или иному модулю. Порты ввода-вывода могут выполнять обе указанные операции.

Пример базовой схемы - восьмиразрядные буферные регистры K580ИP82 и K580ИP83 (инвертирующий) — аналоги зарубежных ИС Intel 8282 и 8283.

Вывод по 2 вопросу

. Интерфейсные БИС в на аппаратном уровне реализуют обмен информацией различных узлов МПС и внешних устройств.

3. Проектирование микроконтроллеров и микропроцессоров

Общие понятия и определения

При проектировании микроконтроллеров решается задача оптимального распределения функций микроконтроллера между АС и ПО. Для решения такой задачи применяются различные методы.

В настоящее время наибольшее распространение получил методологический прием, при котором весь цикл разработки микроконтроллеров рассматривается как последовательность трех фаз проектирования:

- 1) анализ задачи и выбор (и/или разработка) АС микроконтроллера,
- 2) разработка прикладного ПО микроконтроллера,
- 3) комплексирование АС и ПО в прототипе микроконтроллера и его отладка.

Особенности разработки аппаратных средств

Типовой состав АС ядра любой МПС (МП, ПЗУ, ОЗУ, интерфейсные БИС, схемы синхронизации и системного управления) оформляется конструктивно в виде универсальных одноплатных контроллеров, которые предназначены для встраивания в контур управления объектом или процессом

Методика разработки прикладных программ

При разработке ППП для МК используется метод декомпозиции. При этом вся задача последовательно разделяется на меньшие функциональные модули, каждый из которых можно анализировать, разрабатывать и отлаживать отдельно от других. При выполнении прикладной программы в микроконтроллере управление передается от одного функционального модуля к другому.

Схема связности этих функциональных модулей, каждый из которых реализует некоторую завершенную процедуру, образует общую блок-схему алгоритма (БСА) прикладной программы.

Вывод по 3 вопросу

1. Большинство прикладных задач управления объектами должны решаться в реальном времени, то к МП-технике предъявляются высокие требования по быстродействию. Поэтому основным языковым средством написания прикладных программ еще долгое время будет оставаться язык ассемблера МП.

Заключение

- 1. Интерфейс это совокупность унифицированных аппаратурных, программных и конструктивных средств, необходимых для реализации взаимодействия различных функциональных элементов в автоматических системах сбора и обработки информации.
- 2. Проектирование МПС (в том числе и микроконтроллеров) подразумевает разработку как аппаратный, так и программных средств. Устройства сравнения (компараторы) сравнивают уровни напряжений, и выходной сигнал при этом изменяется скачком.