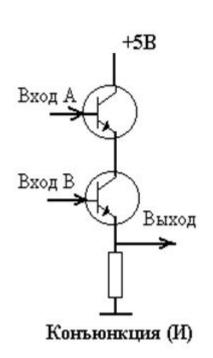

Основы ИТ. Оперативная память.

Логические элементы. Отрицание (He).


Элемент НЕ выполняет роль инвертора. На выходе всегда логическая единица, пока на входе логический нуль и наоборот.

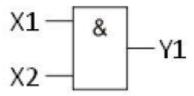


Таблица истинности			
X1	Y1		
0	1		
1	0		

Логические Элементы. Конюнкция (Логическое И)

Смысл элемента в том, чтобы получить на выходе логический уровень нужно подать на все входы логические единицы.

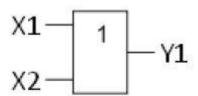


Таблица истинности					
X1	X2	Y1			
0	0	0			
0	1	0			
1	0	0			
1	1	1			

Логические Элементы. Дизюнкция (Логическое ИЛИ)

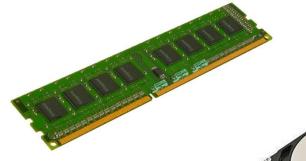
Чтобы на выходе появился логический уровень, нужно чтобы на любом входе ИЛИ на все входы подать логическую единицу.

Таблица истинности					
X1	X2	Y1			
0	0	0			
0	1	1			
1	0	1			
1	1	1			

Калькулятор на реле.

Память компьютера

Компьютерная память (устройство хранения информации, запоминающее устройство) — часть вычислительной машины, физическое устройство или среда для хранения данных, используемая в вычислениях, в течение определённого времени. Память является неизменной частью компьютера с 1940-х. Память в вычислительных устройствах имеет иерархическую структуру и обычно предполагает использование нескольких запоминающих устройств, имеющих различные характеристики.

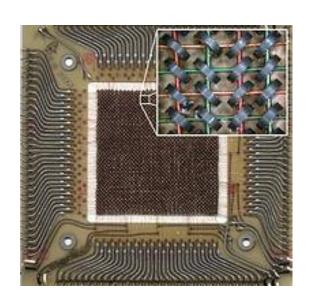

Память компьютера. Виды.

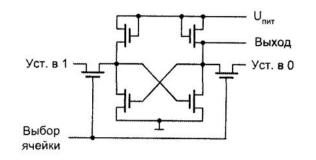
Всю память ПК условно делят на два вида:

- •внутренняя
- •внешнюю

Внутренняя:

- O3A
- •ПЗУ
- •динамическая или статическая.
- •асинхронная или синхронная.
- •энергозависимая или энергонезависимая.
- •Кэш-память?
- •BIOS?
- •CMOS?




Оперативная память. Определение.

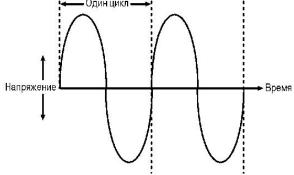
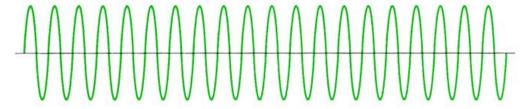
Оперативная память (Random Access Memory, RAM, память с произвольным доступом; ОЗУ (оперативное запоминающее устройство); — энергозависимая часть системы компьютерной памяти, в которой во время работы компьютера хранится выполняемый машинный код (программы), а также входные, выходные и промежуточные данные, обрабатываемые процессором.

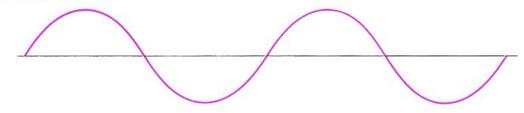
Оперативная память. Классификация.

- •ROM (Read Only Memory). Постоянное запоминающее устройство — ПЗУ.
- •RAM (Random Access Memory). Память с произвольным доступом.
- •DRAM (Dynamic Random Access Memory). Динамическое запоминающее устройство с произвольным порядком выборки.
- •SRAM (Static RAM). Статическая оперативная память.

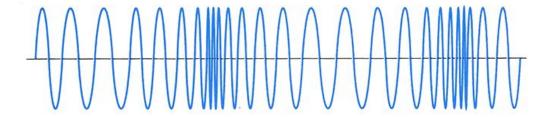
Она названа так потому, что, в отличие от динамической оперативной памяти (DRAM), для сохранения ее содержимого не

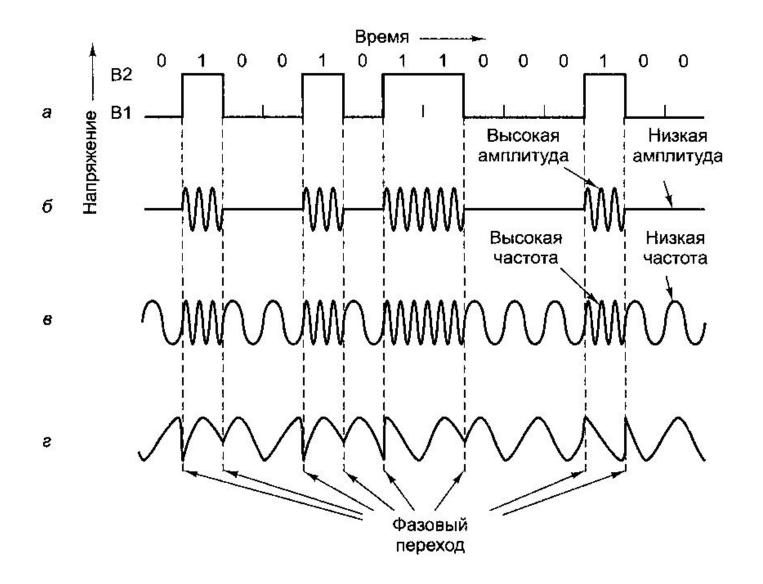
требуется периодической регенерации.


Рис. 3.1. Графическое представление понятия тактовая частота

Пример модуляции сигнала

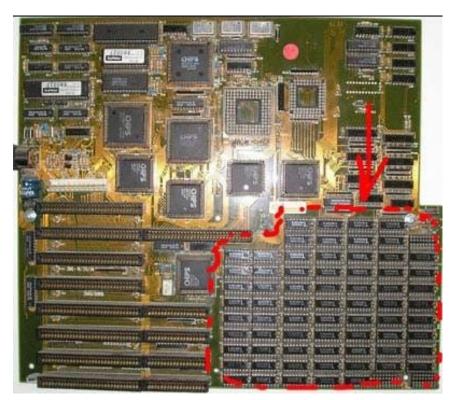

Несущая частота


Сигнал

Частотая модуляция

Пример кодирования сигналов

Оперативная память. Классификация.


- •**Асинхронная память.** Такая память выдаёт данные с меньшей частотой, чем частота шины, на которой она работает (DRAM).
- •Синхронная память. Этот вид памяти обменивается данными с контроллером на той же частоте, на которой работает шина памяти. Типичный пример SDRAM, (Synchronous DRAM).

SDRAM,
DDR (Double Data Rate) SDRAM,
DDR2 SDRAM,
DDR3 SDRAM,
DDR4 SDRAM.

Оперативная память. Формфактор.

Все современные модули память имеют форм-фактор, называемый DIMM, Dual Inline Memory Module - модуль с двухсторонним расположением контактов и имеют разрядность шины данных = 64 бита, т. е. параллельно могут передавать 64

бита (8 байт данных).

Двухканальный режим.

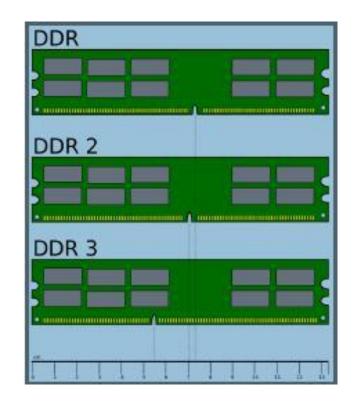
Двухканальный режим (англ. Dual-channel architecture) — режим работы оперативной памяти (RAM) и её взаимодействия с материнской платой, процессором и другими компонентами компьютера, при котором может быть увеличена скорость передачи данных между ними за счёт использования двух каналов для доступа к объединённому банку. Таким образом, система при использовании, например, двух модулей памяти в двухканальном режиме может работать быстрее, чем при использовании одного модуля, равного их суммарному объёму.

Спецификация памяти DDR

Название модуля Тип		іп чипа Тактовая частота шины памяти, МГц	Максимальная теоретическая пропускная способность, МБ/с	
	Тип чипа		одноканальный режим	двухканальный режим
PC1600*	DDR200	100	1600	3200
PC2100*	DDR266	133	2133	4267
PC2400	DDR300	150	2400	4800
PC2700*	DDR333	166	2667	5333
PC3200*	DDR400	200	3200	6400
PC3500	DDR433	217	3467	6933
PC3700	DDR466	233	3733	7467
PC4000	DDR500	250	4000	8000
PC4200	DDR533	267	4267	8533
PC5600	DDR700	350	5600	11200

Оперативная память. Модули. DDR 2.

Память типа DDR2 SDRAM использует модули DIMM с 240 контактными площадками (по 120 с каждой стороны) и одним ключом между этими площадками.


РС2-хххх, где хххх — пиковая скорость передачи данных, выраженная в Мбайт/с, например модуль памяти РС2-5300 имеет пиковую пропускную способность 5.3 Гбайт/с. Так как пропускная способность такого модуля 5300 Мбайт/с, при этом одновременно модуль передает 8 байт данных (64 бита), то по одной линии передачи данных (из 64-х) в секунду передается 5300/8 = 667 Мбит/с. (DDR2-667).

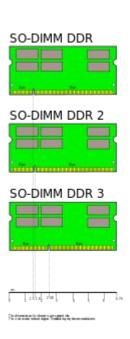
DDR2-400 (модули PC2-3200, 3.2 Гб/с) до DDR2-1066 (модули PC2-8600, 8.6 Гб/с).

Оперативная память. Модули. DDR 3.

Память типа DDR3 SDRAM также использует модули DIMM с 240 контактными площадками (по 120 с каждой стороны) и одним ключом между этими площадками. Ни электрически, ни механически эти модули памяти не совместимы с модулями DDR2, чтобы избежать неверной установки, их ключи расположены по-разному.

Оперативная память. Модули. DDR 4.

Память типа DDR4 SDRAM использует модули DIMM с 288 контактными площадками (по 144 с каждой стороны) и одним ключом между этими площадками, минимальная пропускная способность таких модулей около 17Г6/с, максимальная — около 34Г6/с



Как и ранее, модули маркируются PC4-ххххх, а чипы DDR4-хххх.

SoDIMM

Форм-фактор компактных размеров, используется для установки в ноутбуки, компактны компьютеры, для увеличения памяти в устройствах расширения.

Регистровая памят.

Регистровая память (Registered Memory, RDIMM, иногда buffered memory) — вид компьютерной оперативной памяти, модули которой содержат регистр между микросхемами памяти и системным контроллером памяти. Наличие регистров уменьшает электрическую нагрузку на контроллер и позволяет устанавливать больше модулей памяти в одном канале. Регистровая память является более дорогой из-за меньшего объема производства и наличия дополнительных

микросхем.

ECC

ECC-память (error-correcting code memory, память с коррекцией ошибок) — тип компьютерной памяти, которая автоматически распознаёт и исправляет спонтанно возникшие изменения (ошибки) битов памяти.

Применяется контроль чётности — использование дополнительного бита, который записывает четность остальных битов. Такой подход позволяет обнаруживать ошибки, но не позволяет исправлять их. Таким образом при обнаружении ошибки можно только прервать выполнение программы.

Более надёжным является подход при котором используется коды с коррекцией ошибок. Самым часто используемым кодом с коррекцией ошибок, является код Хэмминга.

