Лекция 2

Ограничения уменьшения размеров МОП транзистора

Зависимость выхода годных Y от минимального размера L м

Закон сохранения выхода годных

 $Y = \exp(-BD_0A) = \exp(-D_0A_{\ni}M)$

1. Ограничения, связанные с дисперсией размеров пыли

Зависимость числа осажденных пылинок от их размера

Влияние размера дефекта и элемента на отказ ИС

Влияние размеров дефектов на степень интеграции ИС

Учет влияния дисперсии размеров дефектов на выход годных ИС.

$$Y = \exp(-A_{3}MD_{0}).$$

Если $D_0 = D/I^{T}$ где D – constant, I – минимальный топологический размер. т – технологический фактор,

и $A_3 = I^2 N$, где N – число квадратов со стороною I, определяющих площадь элемента и тогда

$$Y = \exp(-I^2 NMD/I^T) = \exp(-NMD/I^{-2})$$

Рациональный путь повышения М – увеличение значения технологического фактора - т!

2. Приборные (параметрические) ограничения

Ограничения, связанные со смыканием областей ОПЗ истока и стока при уменьшении лпины канала

Зависимость ширины ОПЗ от концентрации примеси и напряжения смещения

Логика закона масштабирования

	М		
Положительное	увеличивается		
Если,	L _ĸ	n	
то	уменьшить	ŗ	
	КЗ ОПЗ		
отрицательное	возникает		

Зависимость ширины ОПЗ от концентрации примеси и напряжения смещения

Пороговое напряжение МОП-транзистора

 $Q_{\Pi} \sim N_{\Pi}$

Логика закона масштабирования

	М	КЗ ОПЗ		
Положительное	увеличивается	устраняется		
Если,	L _κ	Ν _π	С	
то	уменьшить	увеличить	!	
	КЗ ОПЗ	Un		
отрицательное	возникает	возрастает		

Пороговое напряжение МОП-транзистора

 $C_{\rm d} \sim 1/X_{\rm d}$

Логика закона масштабирования

	М	КЗ ОПЗ	Un	
Положительное	увеличивается	устраняется	уменьшается	
Если,	L _κ	Nn	Хд	C
то	уменьшить	увеличить	уменьшить	:
	КЗ ОПЗ	Un	U _{проб}	
отрицательное	возникает	возрастает	уменьшается	

Логика закона масштабирования

	М	КЗ ОПЗ	Un	
Положительное	увеличивается	устраняется	уменьшается	
Если,	L _κ	Nn	Х _д	En
то	уменьшить	увеличить	уменьшить	уменьшить
	КЗ ОПЗ	Un	U _{проб}	
отрицательное	возникает	возрастает	уменьшается	

Влияние масштабирования на параметры ИС

К - коэффициент масштабирования, E - constant • $\mathbf{L}_{k, \mathbf{W}_{K, \mathbf{X}_{oK}}}, \mathbf{W}_{MC, \mathbf{H}_{pn}}$ 1/k N U_{ct} 1/k Ε 1 ! 1/k (на один транзистор) Г 1/k $1/k^2$ (на один транзистор) ! $1/k^3$ (энергия затрачиваемая на операцию с 1 битом) Pt₂ R_{мс} Κ (при уменьшении лишь ширины дорожки межсоединений) 1/k мс (R_ C_) 1 !

График закона масштабирования

Ограничение графика закона масштабирования

3. Физические ограничения

Подзатворный диэлектрик – основная проблема уменьшения размеров МОП транзистора

Зависимость величины туннельного тока через диэлектрик от напряжения на затворе

Зависимость ширины и длины канала от толщины подзатворного оксида кремния

Изменение толщины подзатворного диэлектрика

Использование альтернативных диэлектриков

Эффективная толщина подзатворного диэлектрика

 $T_{3} = T_{d} \kappa_{ok} / \kappa_{d}$

*Т*_э - эффективная толщина подзатворного диэлектрика
*T*_∂ – толщина альтернативного диэлектрика
*к*_∂ и *к*_{ok} - коэффициенты диэлектрической проницаемости альтернативного диэлектрика и оксида кремния

Влияние диэлектрической проницаемости альтернативного диэлектрика на физическую толщину подзатворного диэлектрика

high K > 20

Микрофотография структуры с оксидом гафния

Ограничения, связанные с потерей полупроводником диэлектрических свойств

Ограничения, связанные с потерей полупроводником диэлектрических свойств

где t_{от} - время до отказа (час), J – плотность тока (A/cм²), n - коэффициент (1 – при малом токе, 3 – при большом токе).

Конструктивные особенности масштабируемой системы металлизации

Толщина металлизации не масштабируется!

Конструктивные особенности масштабируемой системы металлизации

РЭМ - фотография металлизированной разводки

Ограничения, связанные с отводом тепла

Максимальная отводимая мощность 20 Вт/см² (воздушное охлаждение)

Максимальная степень интеграции $M = 2x20BT/1mkBT = 4x10^7$!

Предельные значения физических параметров

Предельная величина концентрации примеси:

для pп- перехода — $2x10^{19}$ см $^{-3}$, для канала МОП Т ~-~ 1,2x10 18 см $^{-3}$

Предельное электрическое поле в оксиде кремния

 $E = 6x10^{6} B/cm$

Предельная плотность тока в алюминиевой разводке

 $J = 5x10^5 A/cm^2$

Предельная отводимая от кристалла мощность

20 Вт/см²

Минимальная толщина оксида кремния

3 нм

График закона масштабирования с учетом физических ограничений

Ограничения уменьшения размеров традиционного МОП транзистора

Физический параметр	Предельная величина	Параметр, определяющий предел
Толщина подзатворного окисла	2.3 нм	Утечка через подзатворный окисел
Глубина залегания области сток/исток	30 нм	Сопротивление сток-исток
Легирование канала	Пороговое напряжение V _т =0.25 В	Утечка сток-исток
Перекрытие стока/истока затвором	15 нм	Сопротивление сток-исток
Длина канала	0.06 мкм.	Утечка сток-исток
Ширина затвора	0.10 мкм.	Утечка сток-исток

4. Технологические ограничения, связанные с процессом совмещения при литографии

Установка совмещения и экспонирования на участке фотолитографии

ПДР – допуск на расположение элементов одного фотошаблона относительно другого, при котором параметры элементов ИС еще удовлетворяют требованиям ТУ

N⁰	Факторы определяющие ПДР	ПДР, мкм
1	Точность расположения элементов на шаблоне	
2	Совместимость шаблонов в комплекте	
3	Неплоскостность шаблона и пластины	
4	Критические размеры рисунка шаблона	
5	Воспроизводилось ширины линии на пластине (в слое фоторезиста и после травления)	
		1,3

Таблица факторов, определяющих ПДР (I = 3 мкм)

Масштабируемость ПДР

Для ячейки МОПИС ЗУ (I = 3 мкм, ПДР = 1,3 мкм)

L мкм	2,5	2,0	1,5	1,0	0,7	0,5
ПДР мкм						
Площадь ячейки %	81	49	25	12	6	3
Эффекти вность использо вания площади	1	1,7	3,2	6,8	13,5	27 Увеличе ние М в 27 раз!

Таблица факторов, определяющих ПДР (I = 3 мкм)

	N⁰	Факторы определяющие ПДР	ПДР, мкм
ПДР – допуск на расположение элементов одного фотошаблона относительно другого, при котором параметры элементов ИС еще удовлетворяют требованиям ТУ	1	Точность расположения элементов на шаблоне	
	2	Совместимость шаблонов в комплекте	
	3	Неплоскостность шаблона и пластины	
	4 51	Критические размеры рисунка шаблона	
	5	Воспроизводилось ширины линии на пластине (в слое фоторезиста и после травления)	
			1,3 мкм

где t_{от} - время до отказа (час), J – плотность тока (A/см²), n - коэффициент (1 – при малом токе, 3 – при большом токе).

Конструктивные особенности масштабируемой системы металлизации

РЭМ - фотография металлизированной разводки

Причина немасштабируемости линии при литографии

Толщина пленки не масштабируется, что обуславливает постоянство величины бокового подтравливания под маску определяющее ПДР.

Методы самосовмещения в технологии ИС

Self Aligned

PSA, APSA, NSA, QSA, SST, VIST. SWAMI. SICOS

Самосовмещение с разнотолщинной маской с использованием открытого травления Традиционный маршрут

Критичная Диффузи фотолитография р фосфора п

Самосовмещение «Полный эмиттер»

Влияние температуры и среды на перераспределение примеси при окислении

Инверсионный канал по краю кармана р-типа

Распределение примеси по глубине при ионной имплантации

Самосовмещение с разнотолщиной маской с использованием ионной имплантации

n

Самосовмещение с помощью твердой маски

Ионная имплантация фосфора

Самосовмещение с использованием электродов в качестве маски

Ионная имплантация бора

Самосовмещение с использованием легированного поликремниевого электрода

Поликремний, легированный мышьяком

Самосовмещение с помощью «спейсеров»

Ионная имплантация мышьяка

Самосовмещение с использованием Lift off («взрывной»)

технологии

Растворение жертвенного слоя – «взрыв» п

Самосовмешение с использованием бокового подтравливания и «взрывной» технологии

Перекрестная металлизация

Фотолитографии

В скобках специфические травители

Фоторезист
Нитрид магния (перекисно-аммиачная смесь)
Пиролитический оксид кремния (плавиковая
кислота)
Полиимид (кислородная плазма)
Термический оксид кремния (плавиковая уислота)
Кремний (п-типа)

Последовательное

травление окон в слоях и боковое подтравливание в специфических травителях и удаление фоторезиста

Фундаментальные физические ограничения уменьшения размеров

Параметр	Физическое ограничение
Минимальная величина одного элемента, 0,03 нм	Статистические флуктуации легирования подложки, разрешение фоторезиста, космические лучи и радиоактивность, конечная ширина p-n перехода
Толщина подзатворного диэлектрика, 2,3 нм	Туннельные точки через диэлектрик
Минимальное напряжение питания 0,025 В	Тепловой потенциал kT/q
Минимальная плотность тока, 10 ⁻⁶ А/см ²	Дискретность заряда электрона, флуктуации встроенного заряда
Минимальная мощность, 10 ¹² Вт/элемент при f=1 кГц	Шумы, тепловая энергия, диэлектрическая постоянная
Предельное быстродействие, 0,03 нс	Скорость света
Максимальное напряжение питания	Пробой подзатворного диэлектрика, смыкания областей истока и стока
Максимальное легирование подложки	Туннельный пробой p-n перехода стока
Максимальная плотность тока	Электромиграция, падения напряжения на паразитных сопротивлениях контактов
Максимальная мощность	Теплопроводность подложки и компонентов схемы
Количество элементов на кристалл	Совокупность всех ранее перечисленных ограничений

010