Обнинский институт атомной энергетики национального исследовательского ядерного университета «МИФИ»

Физико-технические основы создания ЭГК для термоэмиссионных ЯЭУ различного назначения. Влияние примесей на эмиссионноадсорбционные характеристики электродов и выходные характеристики ТЭП, ЭГЭ, ЭГК

профессор В.И.Ярыгин

Основные типы термоэмиссионных ЯЭУ

Основные направления НИОКР для обеспечения требуемых характеристик ЭГК

проектные решения по организации рабочего процесса преобразования энергии;

• электродные материалы;

• топливные композиции.

Схема многоэлементного ЭГК

Конструкция одноэлементного ЭГК КЯЭУ «ЕНИСЕЙ»

- 1. Эмиттер
- 2. Коллектор
- 3. Гермовводы
- 4. Сильфоны
- 5. Дистанционаторы
- 6. Внешняя электроизоляция

- Канал подачи цезия в МЭЗ (межэлектродный зазор)
 - 8. Топливо
- 9. Торцевые отражатели
 - 10. Фиксирующее устройство
 - 11. Токовыводы

Унифицированный электрогенерирующий канал

ОСНОВНЫЕ УЗЛЫ ЭГК

Схема одноканального многоэлементного ЭГК (а) и ЭГК с внешним расположением топлива (б)

Схема ЭГК с внешним расположением топлива

корпус внутренний, 2 – изоляция охранного электрода, 3 – изоляция токовывода, 4 – токовывод катодный, 5 – коммутация, 6 – эмиттер,
 корпус эмиттера, 8 – экраны, 9 –коллектор, 10 – токовывод анодный,
 узел эмиттерный, 12 – теплоноситель.

Схема ЭГК с вынесенной из активной зоны термоэмиссионной системой преобразования (с двукратным резервированием термоэмиссионных преобразователей)

Концепция комбинированного ЭГК

11

Обобщенные характеристики ТЭП с различными парами электродных материалов и схемами организации рабочего процесса по результатам НИОКР ГНЦ РФ-ФЭИ

12

Принципиальная схема базовых технологий, использующихся при

формировании эмиссионных покрытий электродов ЭГЭ и ЭГК

Структура поверхности и азимутальное распределение вакуумной работы выхода электронов W_{фт.} [111]

2, 3 – переходные области;
 4 – область с ориентацией (112).

Эмиссионные характеристики и схемы эмиттерных оболочек

ориентированная по (110)-грани, %

Фасетирование эмиссионной поверхности вольфрамового покрытия на кристаллографическом направлении [121]

Зависимости Рейзора перспективных эмиттеров

Зависимости Рейзора перспективных коллекторов

Химический состав основных электродных материалов

Материал	Содержание, мас.%									
	Nb	Мо	W	Ti	Zr	V	С	0		
BH-2	основа	4.4	-	1.2 · 10 ⁻²	7 · 10 ^{−1}	-	7 · 10 ^{−2}	2 · 10 ^{−2}		
CM-4	-	основа	<10 ⁻³	-	-	-	4 · 10 ^{−3}	1 · 10 ^{−3}		
Мо монокр.	-	основа	10 ⁻¹	-	-	-	2 · 10 ^{−3}	1 · 10 ⁻³		
W монокр.	-	-	основа	-	-	-	<10 ⁻³	<10 ⁻³		
W фторид. (110)	-	-	основа	-	-	-	<10 ⁻³	<10 ⁻³		
V (вакуум. плавл.)	-	-	-	3 · 10 ^{−2}	-	основа	<10 ⁻³	1 · 10 ⁻²		
ВХ2У	_	_	-	Суммарное количество <10 ⁻¹		2	Суммарное количество < 6 · 10 ⁻¹			

Химический состав основных электродных материалов (продолжение)

Материал	Содержание, мас.%									
	Ru	ΑΙ	Mg	N ₂	Cr	Fe	Ni	Si	Y/B	
BH-2	-	-	-	-	3 · 10 ⁻²	-	5 · 10 ⁻³	3 · 10 ^{−2}	-	
СМ-4	2 · 10 ⁻¹	1 · 10 ^{−3}	1 · 10 ^{−2}	1 · 10 ^{−3}	1.4 · 10 ⁻²	2.5 · 10 ⁻²	1 · 10 ⁻²	-	-	
Мо монокр.	-	1.5 · 10 ^{−3}	1 · 10 ^{−3}	2 · 10 ^{−3}	1.8 · 10 ⁻²	1 · 10 ^{−3}	1 · 10 ^{−3}	3 · 10 ^{−3}	-	
W монокр.	-	_	-	<10 ⁻³	-	-	_	-	-	
W фторид.(110)	-	<3 · 10 ⁻⁴	<10 ⁻³	<10 ⁻³	<10 ⁻³	<1 · 10 ⁻³	<10 ⁻³	-	-	
V (вакуум. плавл.)	-	7 · 10 ⁻³	-	-	-	8 · 10 ⁻³	-	_	-	
ВХ2У	_	_	-	-	основа	_	-	-	5 · 10 ^{−1} / 5 · 10 ^{−2}	

Концепция специалистов ГНЦ РФ-ФЭИ

Низкая энергонапряжённость ЭГК на основе высокоэффективных низкотемпературных ТЭП/ЭГЭ/ЭГК с электродной парой Pt-BX2У и отделением полости ТВЭЛ от МЭЗ – потенциальная физико-техническая возможность увеличения ресурса и надёжности КЯЭУ

Платина – эффективный эмиттер

- Выбор платины обусловлен наиболее высокой вакуумной работой выхода для эмиссионных поликристаллических покрытий эмиттера, что обеспечивает:
- максимальную эффективность эмиттера;
- стабильность его свойств при воздействии рабочей среды МЭЗ.
- Исследования и испытания показали, что 3÷5 мкм Pt покрытия при эмиттерных температурах формируют в эмиссионном слое молибденовой или вольфрамовой оболочек приповерхностный сплав, на порядки уменьшающий скорость испарения платины и понижающий приведенную степень черноты электродной пары.

Электродная пара Рt-сплав ВХ2У

- НИР по увеличению эффективности и ресурса термоэмиссионных преобразователей проводились по двум основным направлениям:
- исследование преобразователей с эффективной
 электродной парой платиновое поликристаллическое
 покрытие на эмиттере и покрытие из малолегированного
 хром-ванадиевого сплава ВХ2У на коллекторе;
- поиск рабочего процесса, способного формировать и длительно поддерживать на высоком уровне выходные электрические характеристики низкотемпературного термоэмиссионного преобразователя.

Электродная пара Pt–сплав ВХ2У (продолжение)

- Освоены технологии создания платинового и ВХ2У-покрытий толщиной 3÷10 мкм, позволяющие формировать покрытия на внутренней и наружной поверхности эмиттерной и коллекторной оболочек.
- В обоснование технологий проведен комплекс исследований и испытаний:
- экспериментальные исследования температурной эволюции
 - элементного состава электродов,
 - кристаллографической ориентации рабочей поверхности

электродов;

- работы выхода эмиссионных покрытий для широкого диапазона температуры электродов;
- ✔ испытания электродов с покрытиями в лабораторных ТЭП с электронагревом.
- Подтвержденный экспериментально к настоящему времени рабочий ресурс термоэмиссионных преобразователей на основе термоэмиссионной пары материалов платина-ВХ2У составляет около одного года.

Ресурсные испытания ЭГЭ в энергонапряжённых режимах (q_E = 40 BT/см²)

Экспериментальные результаты испытаний низкотемпературных ТЭП/ЭГЭ с электродной парой Pt-BX2У

Основные причины деградации характеристик КЯЭУ «ТОПАЗ»

Каналы влияния на рабочий процесс в МЭЗ

Влияние примесей ГПД и ЛПД

а) Относительное изменение интенсивности активных процессов влияния примесей из межэлектродной страны ТЭП на эмиттер (а) и коллектор (б) для ЯЭУ типа "ТОПАЗ".

Влияние водорода

Влияние углерода

Образование эмиссионно-активных ГПД и ЛПД

На примере образования изотопов Ва-140 и La-140

 $^{235}U + n \rightarrow 16 \operatorname{cek}^{140}Xe \rightarrow 66 \operatorname{cek}^{140}Cs \rightarrow \underline{3,8} \qquad \underline{6,0}$

-▶12,8 дня ¹⁴⁰Ва → 40,2 час <u>6,35</u> ¹⁴⁰Lа <u>6,35</u> → стаб. ¹⁴⁰Се <u>6,44</u>

Образование эмиссионно-активных ГПД и ЛПД (продолжение)

- Щелочноземельные и редкоземельные ПД существуют в топливной матрице UO₂ в виде нелетучих оксидов. Активно мигрировать по полостям ЭГК и выходить в газоотводной тракт могут их материнские нуклиды Kr,Xe,Rb и Cs
- $Kr \rightarrow Rb \rightarrow Sr \rightarrow Y \rightarrow Zr \rightarrow Nb \rightarrow Mo$
- $Xe \rightarrow Cs \rightarrow Ba \rightarrow La \rightarrow Ce \rightarrow Pr \rightarrow Nd$

Образование эмиссионно-активных ГПД и ЛПД (продолжение)

Наиболее значимые цепочки:

Хе138 → Cs138 → Ba138 14,13 мин 33,4 мин

Xe139 → Cs139 → Ba139 → La139 40,8 с 9,4 мин 84,4 мин

Xe140 \rightarrow Cs140 \rightarrow Ba140 \rightarrow La140 \rightarrow Ce140 13,6 c 65,5 c 12,79 сут 40,22 час

Образование эмиссионно-активных ГПД и ЛПД (продолжение)

Схема миграции атомов ГПД и ЛПД по полостям ЭГЭ:

```
Топливные гранулы
Объем пористости ТК
Компенсационный объем
Тракт ГОУ
МЭЗ (сумма по всем ЭГЭ)
```

Влияние эмиссионно-активных ГПД и ЛПД

Изменение работы выхода системы Me(110)-Ва в зависимости степени покрытия барием при адсорбции на подложку при *T*=300 К (принято, что Θ_{Ba} = 1 в максимуме Φ_{Ba}): 1 – Nb; 2 – Mo; 3 – W

Влияние эмиссионно-активных ГПД и ЛПД (продолжение)

Изменение работы выхода коллектора из поликристаллического Мо в цезиевом ТЭП:

Р_{ва} = 2 · 10⁻³ – 2 · 10⁻¹ мм.рт.ст.

Влияние эмиссионно-активных ГПД и ЛПД (продолжение)

Изменение экспериментальной ВАХ ТЭП в зависимости от величины парциального давления ксенона: $T_E = 1800$ K; $P_{Cs} = opt; d = 0,25$ мм.

Модифицированная топливная композиция на основе UO₂

- 1 данные из литературы;
- 2 штатные таблетки UO₂ OAO "MC3";
- 3 штатные таблетки UO₂ с добавкой Er₂O₃ OAO "MC3";
- 4 модифицированные таблетки UO₂+0,05%TiO₂;
- 5 модифицированные таблетки UO₂+0,1%SnO₂;
- 6 модифицированные таблетки UO₂ (с наночастицами)

Для повышения теплопроводности и термостойкости при «мокрой» технологической схеме производства таблеток UO₂ улучшена его микроструктура за счет соосаждения мелкодисперсных частиц размером 10 – 20 нм.

Перспективный ЭГК для КЯЭУ нового поколения.

- С раздельными полостями ТВЭЛ и МЭЗ.
- С течением пара Сѕ в МЭЗ.
- С высокоэффективной низкотемпературной электродной парой.
- С большой эмиссионной поверхностью (× 1,5-2) в схемах, подобных комбинированному ЭГК.
- С ТВЭЛ на основе модифицированного топлива.

СПАСИБО ЗА ВНИМАНИЕ!