

High Gain InAs e-APDS with Excess Noise Factors Approaching a Solid State Photo-Multiplier

- APDs can improve receiver sensitivity by providing signal amplification in the detecting photodiode
- e-APDs provide amplification with minimal noise
- Benefiting applications with fewer photons
 - Active or 3D imaging (short integration times)
 - Hyperspectral imaging (spread spectrum)
 - Range finding
 - C0₂ monitoring
 - Photon counting
- Other benefits
 - Use lower power sources for active imaging
 - Use smaller optics collecting less light

Multispectral and hyperspectral imaging with QDIPs

Night vision and surveillance

Chemical/material identification

www.ipac.caltech.edu

Atmospheric monitoring

Medical imaging

www.ipac.caltech.edu

Why Algorithmic spectrometer?

QDIPs are 2 terminal devices.

Can be dynamically configured

High resolution multicolour FPA

Multispectral : Full FPA

Multispectral: Pixel-by-pixel

Future Intelligent

Sensors?
No moving parts

No cooled optical filters needed

Conclusion & Questions

- EEE team develop new theories, proof of concepts of novel material and sensing techniques with typical conclusions such as
 - Low strain QDIPs with between 30 and 80 stacks have been grown, dark current results show no strain effects
 - QDIPs can be used with algorithmic spectrometer to image filters in the LWIR and MWIR regions – promising for material classification such as polyurethane e.t.c.
- Is this enough or can we do more?

Contact Details:

Department of Electronic & Electrical Engineering

University of Sheffield
Sir Frederick Mappin Building
Mappin Street
Sheffield S1 3JD, U.K.
Tel:44-(0)114-2225185
Fax:44-(0)114-2225143

Email: c.h.tan@sheffield.ac.uk j.s.ng@sheffield.ac.uk j.p.david@sheffield.ac.uk