Прямолинейное равномерное движение

Прямолинейное движение

 это движение, при котором траектория тела является прямой линией.

Равномерное прямолинейное движение

 это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Основная характеристика движения – **скорость**.

Это векторная величина, определяющая быстроту совершаемого движения.

Скорость задана полностью, если известны и её модуль, и направление

Скорость прям. равномер. движения равна отношению перемещения ко времени, за которое оно совершено.

$$\overrightarrow{r}_{0} \xrightarrow{\Delta \overrightarrow{r}} M_{2} \qquad \overrightarrow{v} = \frac{\Delta \overrightarrow{r}}{\Delta t} = \frac{\overrightarrow{r}_{2} - \overrightarrow{r}_{1}}{\Delta t} = \frac{\overrightarrow{S}}{\Delta t}$$

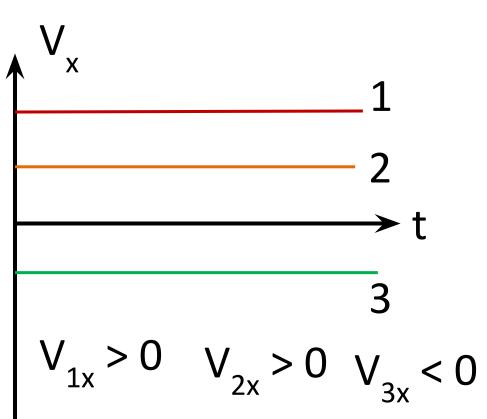
Направление скорости всегда совпадает с направлением перемещения.

Проекция скорости на ось

$$v_x = \frac{S_x}{\Delta t} = \frac{x - x_0}{\Delta t}$$

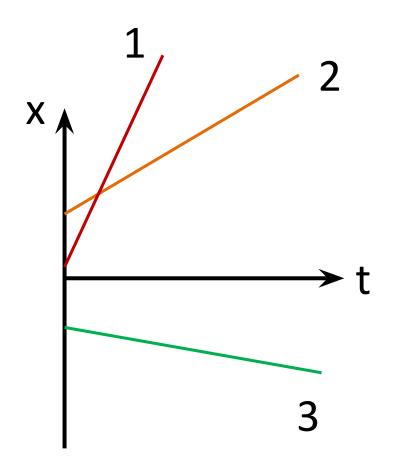
Уравнение прямолинейного движения

$$\overrightarrow{S} = \overrightarrow{v} \times t$$

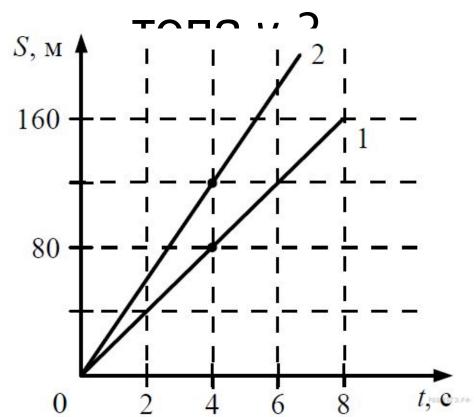

$$S_{x} = v_{x} \times t$$

$$S_{x} = v_{x} \times t$$

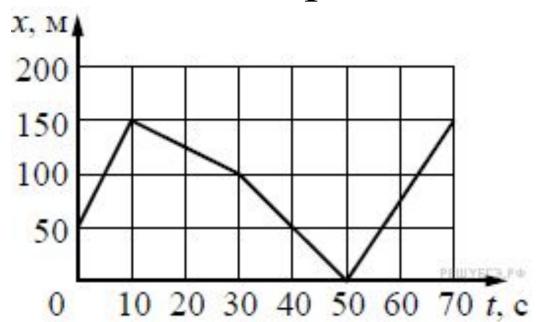
$$X = x_{0} + S_{x} = x_{0} + v_{x} \times t$$


Графическое представление равномерного движения

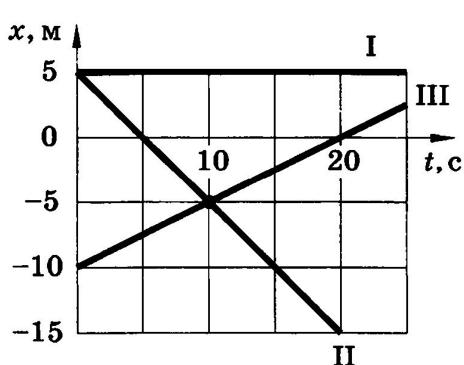
Зависимость проекции скорости от времени



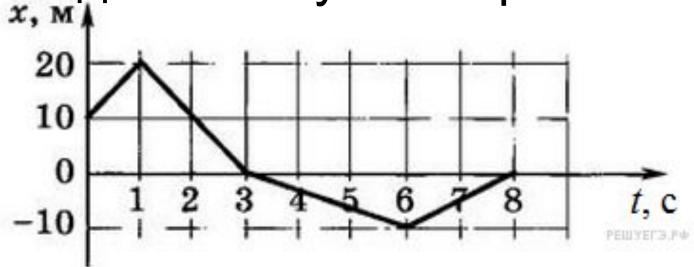
Площадь фигуры между графиком скорости и осью времени численно равна модулю перемещения.


Зависимость координаты тела от времени

на рисунке представлены графики зависимости пройденного пути от времени для двух тел. На какую величину Δv скорость второго тела v_2 больше скорости первого



Задача 1. На рисунке представлен график зависимости координаты х велосипедиста от времени t. Чему равен наименьший и наибольший модуль проекции скорости велосипедиста на ось Ox? Ответ выразите в м/с.


21. Движение грузового автомобиля описывается уравнением $x_1 = -270 + 12t$, а движение пешехода по обочине того же шоссе — уравнением $x_2 = -1,5t$. Сделать пояснительный Определить начальные координаты объектов и их скорости. Найти время и место встречи.

22. По заданным графикам (рис. 9) найти начальные координаты тел и проекции скорости их движения. Написать уравнения движения тел x = x(t). Из графиков и уравнений найти время и место встречи тел, движения которых описываются графиками II и III.

Задача 2. На рисунке изображен график зависимости координаты тела от времени, движущегося вдоль оси X.

Построить график зависимости проекции скорости от времени; пройденного пути от времени

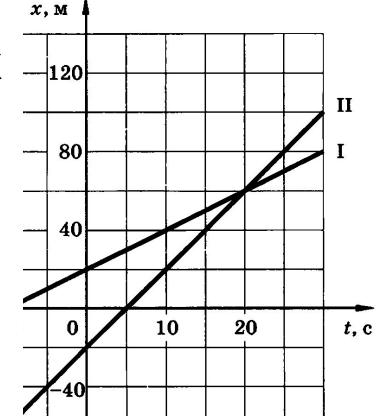
25. По прямому щоссе в одном направлении движутся два мотоциклиста. Скорость первого мотоциклиста 10 м/с. Второй догоняет его со скоростью 20 м/с. Расстояние между мотоциклистами в начальный момент времени равно 200 м. Написать уравнения движений мотоциклистов в системе отсчета, связанной с землей, приняв за начало координат место нахождения второго мотоциклиста в начальный момент времени и выбрав за положительное направление оси X направление движения мотоциклистов. Построить на одном чертеже графики движения обоих мотоциклистов (рекомендуемые масштабы: в 1 см 100 м; в 1 см 5 с). Найти время и место встречи мотоциклистов.

что положение автомобиля при t=0 совпадает с началом от-

счета, а ось X направлена в ту же сторону, что и скорость дви-

26(н). Автомобиль и велосипедист движутся навстречу

жения автомобиля.


Графически и аналитически определить: а) место и время их встречи; б) кто из них раньше пройдет сотый метр и на сколько раньше; в) расстояние между ними через 5 с; г) где находился автомобиль в тот момент, когда велосипедист проходил точку с координатой 225 м; д) когда велосипедист проходил точку, в которой автомобиль был через 7,5 с после нача-

Домашнее задание параграфы 7,8 упражнение 1

23. Движения двух велосипедистов заданы уравнениями: $x_1 = 5t$, $x_2 = 150 - 10t$. Построить графики зависимости x(t).

Найти время и место встречи.

Графики движения двух тел представлены на рисунке. Определить времени место их встречи. Записать уравнение зависимости координаты от времени для обоих тел

