Радиотехнические цепи и сигналы

Кафедра радиотехники СФУ

Проф. Кашкин В.Б.

Радиотехнические цепи и сигналы

Целью курса изучение является фундаментальных закономерностей, связанных с анализом и синтезом сигналов, передачей информации, обработкой преобразованием сигналов в различных цепях, применительно к различным радиотехническим системам. Студент должен правильно выбирать математический аппарат при анализе/синтезе различных сигналов и цепей; выявлять связь математической модели и реального процесса/ цепи.

Программа

- 1. Канал связи, его составные части.
- 2. Свойства сигналов: длительность, динамический диапазон, энергия, мощность, ортогональность и когерентность сигналов.
- 3. Разложение произвольного сигнала по заданной системе базисных функций.
- 4. Разложение сигналов в обобщенный ряд Фурье. Ряд Фурье-Уолша.
- 5. Периодические сигналы. Тригонометрический ряд Фурье.
- 6. Гармонический анализ непериодических сигналов. Интеграл Фурье.
 7. Свойства преобразования Фурье (сдвиг во времени, изменение масштаба, свойство линейности, дифференцирование и интегрирование, смещение
- спектра, спектр произведения и др.).

 8. Энергетические характеристики периодических и непериодических сигналов.
- 9. Эффективная длительность и ширина спектра сигнала.
 10. Общая характеристика радиосигналов. Радиосигналы с амплитудной
- модуляцией (AM). 11. Спектральные характеристики сигналов при гармонической угловой
- модуляции.
- 12. Радиосигналы с линейной частотной модуляцией (ЛЧМ).
- 13. Сигналы с амплитудной импульсной модуляцией (АИМ) и их свойства.
- 14. Линейные цепи с постоянными параметрами. Импульсная
- характеристика. Коэффициент передачи. АЧХ и ФЧХ. 15. Временной и спектральный методы анализа передачи сигналов через линейные цепи с постоянными параметрами.

- 16. Дискретизация непрерывных сигналов. Теорема Котельникова во временной и частотной областях.
- 17. Аналого-цифровые и цифро-аналоговые преобразования.
- 18. Дискретное преобразование Фурье и его свойства.
- 19. Узкополосные сигналы (огибающая, фаза и частота узкополосного сигнала).
- 20. Дискретизация узкополосных сигналов.
- 21. Аналитический сигнал. Огибающая и фаза аналитического сигнала. Преобразование Гильберта, его свойства.
- 22. Тепловой шум. Формула Найквиста.
- 23. Стационарные случайные процессы. Плотность вероятности. Физический смысл математического ожидания и дисперсии.
- 24. По каким формулам вычисляются на компьютере среднее значение, дисперсия и функция автокорреляции случайного процесса?
- 25. Стационарные случайные процессы. Спектр мощности и его свойства.
- 26. Функция корреляции стационарного случайного процесса и ее свойства.
- 27. Авторегрессионная модель стационарного случайного процесса.
- 25. Корреляционный анализ детерминированных сигналов.
- 26. Белый шум. Спектр мощности случайного процесса на выходе линейной цепи при воздействии на вход белого шума.
- 27. Теорема Винера-Хинчина.
- 28. Шум квантования. Вычисление среднего и дисперсии.

Литература

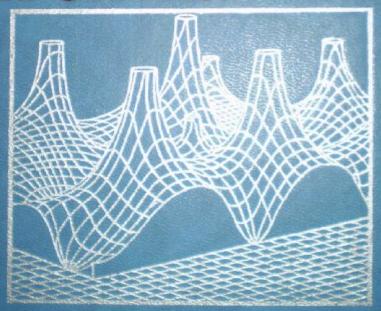
- Иванов М.Т., Сергиенко А.Б., Ушаков В.Н.
 Теоретические основы радиотехники. М.: Высшая школа, 2008. 306 с.
- 2. Баскаков С.И. Радиотехнические цепи и сигналы. М.: Высшая школа, 1983 г., 1988 г, 2000 г. 462 с.
- 3. Васильев В., Гуров И. Компьютерная обработка сигналов. СПб: БХВ —Санкт-Петербург, 1998 г.
- 4. Гоноровский И.С. Радиотехнические цепи и сигналы. М.: Сов. радио, 1977 г, 1986 г, 1994 г. 512 с.

М.Т. ИВАНОВ А.Б. СЕРГИЕНКО В.Н. УШАКОВ

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАДИОТЕХНИКИ

С.И.Баскаков

Радио/ технические цепи и сигналы



частотного диапазона	диапазона	волнового диапазона	диапазона
Крайние низкие, КНЧ	3-30 Гц	Декамегаметровые	100 - 10 Мм
Сверхнизкие, СНЧ	30 - 300 Гц	Мегаметровые	10 - 1 Мм
Инфранизкие, ИНЧ	0,3-3 кГц	Гектокилометровые	1000 - 100 км
Очень низкие, ОНЧ	3 - 30 кГц	Мириаметровые	100 - 10 км
Низкие частоты, НЧ	30 - 300 кГц	Километровые	10 - 1 KM
Средние, СЧ	0,3 - 3 МГц	Гектометровые	1 - 0,1 км
Высокие частоты, ВЧ	3 - 30 МГц	Декаметровые	100 - 10 м
Очень высокие, ОВЧ	30 - 300 МГц	Метровые	10 - 1 M
Ультравысокие,УВЧ	0,3-3ГГц	Дециметровые	1 - 0,1 м
Сверхвысокие, СВЧ	3 - 30 ГГц	Сантиметровые	10 - 1 см

Границы

30 - 300 ГГЦ

300 - 3000 ГГц

Наименование

Миллиметровые

Децимиллиметровые

Границы

10 - 1 MM

1 - 0,1 MM

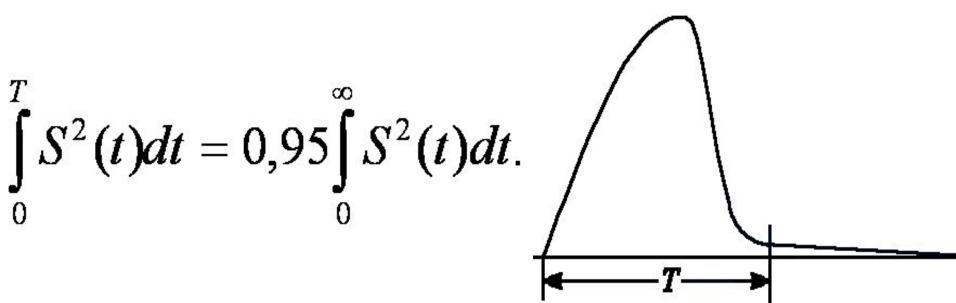
Наименование

Крайне высокие, КВЧ

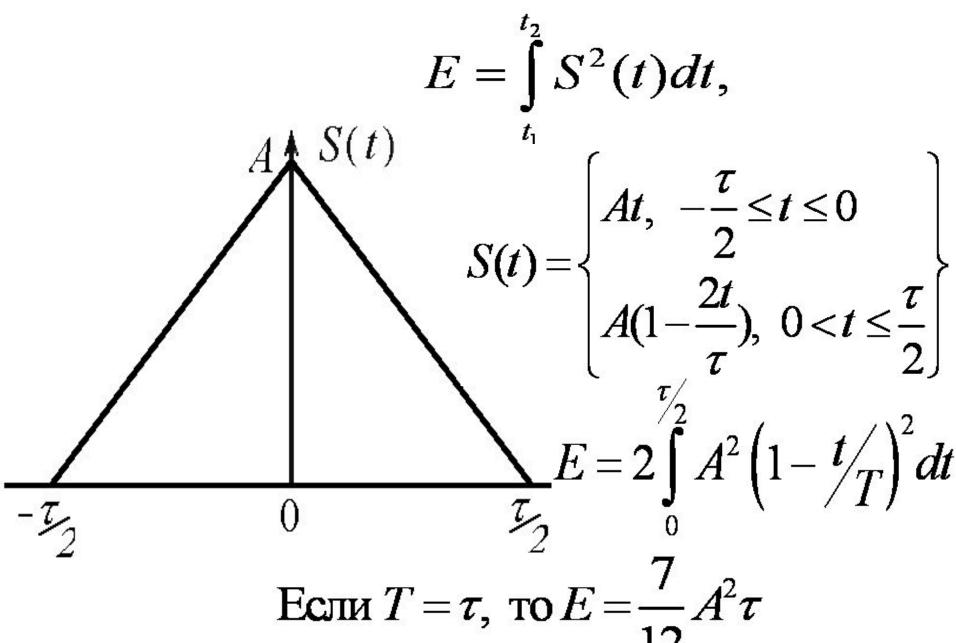
Гипервысокие, ГВЧ

Важнейшие физические характеристики сигнала: длительность, энергия, динамический диапазон

Реальные сигналы обладают конечной длительностью $(t_2 - t_1)$. Однако в качестве математических моделей сигнала можно использовать функции, заданные на интервале времени $[0, \infty)$ или $(-\infty,\infty)$, лишь бы энергия сигнала оставалась конечной. Длительность можно определить как промежуток времени, в пределах которого сосредоточена основная доля энергия, например, ее 90 % или 95 %. При $t_1 = 0$, $t_2 = \infty$ длительность T может быть найдена как решение уравнения:



Энергия сигнала определяется как



Допустимы линейные операции над сигналами:

- 1. Для всех $S_i(t)$, $S_j(t)$ существует сумма S(t)= $S_i(t)$ + $S_j(t)$, равенство должно выполняться для всего динамического диапазона сигналов $S_i(t)$, $S_j(t)$. Это отражает реальную ситуацию, когда, например, сигналы от различных радиостанций складываются в антенне, к тому же добавляются помехи.
- 2. Для любого сигнала $S_i(t)$ и любого вещественного числа α определен сигнал $S = \alpha S_i(t)$. Это отражает реальную ситуацию: возможность усиления или ослабления сигнала.
- 3. Возможно задерживать сигнал: $S_1(t) = S(t t_0)$ Говорят, что сигналы с конечной энергией, для которых определены линейные операции, относятся к пространству L^2 .

Расстояние между сигналами $S_i(t)$ и $S_j(t)$

$$\rho(S_i, S_j) = \sqrt{\int_{t_1}^{t_2} [S_i(t) - S_j(t)]^2 dt},$$

сигналов

$$(S_i, S_j) = \int_{t_i}^{t_2} S_i(t) S_j(t) dt.$$

Скалярное произведение комплексных сигналов

$$(S_i, S_j) = \int_{t_1}^{t_2} S_i(t) S_j^*(t) dt,$$

Скалярное произведение двух ортогональных сигналов равно

$$(f_{i}, f_{j}) = 0$$
, если $i \neq j$; $(f_{i}, f_{j}) = E_{i}$, если $i = j$.

Система ортогональных функций $\{f_i(t)\}$ из L^2 может быть использована как *координатный базис* в линейном пространстве, если эти функции являются линейно независимыми. Это означает, что

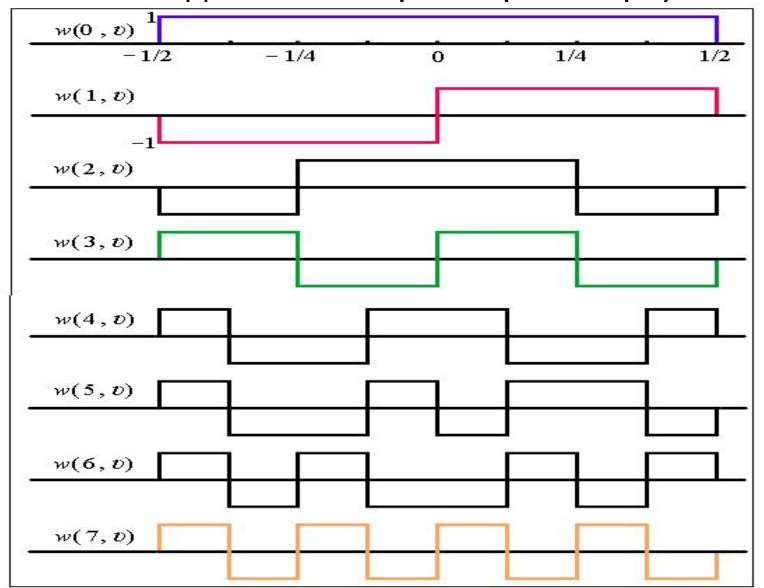
$$\sum_{i=0} a_i f_i = 0$$

тогда и только тогда, когда все числа $a_i \equiv 0$.

Любой сигнал s(t) из L^2 может быть разложен в ряд

$$s(t) = \sum_{i=0}^{\infty} c_i f_i^{}$$
. Обобщенный ряд Фурье по системе функций $\{f_i(t)\}$.

Ортогональная система функций Уолша wal(n, υ) которая на отрезке [-1/2, 1/2] принимает значения \pm 1. Здесь υ – безразмерный аргумент.



Разложение пилообразного импульса **А** = 20 В в ряд по функциям Уолша, сигнал аппроксимирован ступенчатой кривой. Первое приближение k = 0, погрешность аппроксимации $\delta = 50\%$. Второе k = 1, погрешность δ = 25%. Третье k = 3, погрешность δ = 12,5%. Четвертое $C_0 = 10$; $C_1 = 5$; $C_3 = -2.5$; $C_7 = -1.25$ $k = 7, \delta =$ 20 B 18,75 k = 7

Наиболее распространена система ортогональных тригонометрических функций. Любая периодическая функция s(t) с периодом T, с конечной энергией интервале [0, T], может быть разложена в ряд по системе функций в pяd Φy рьe

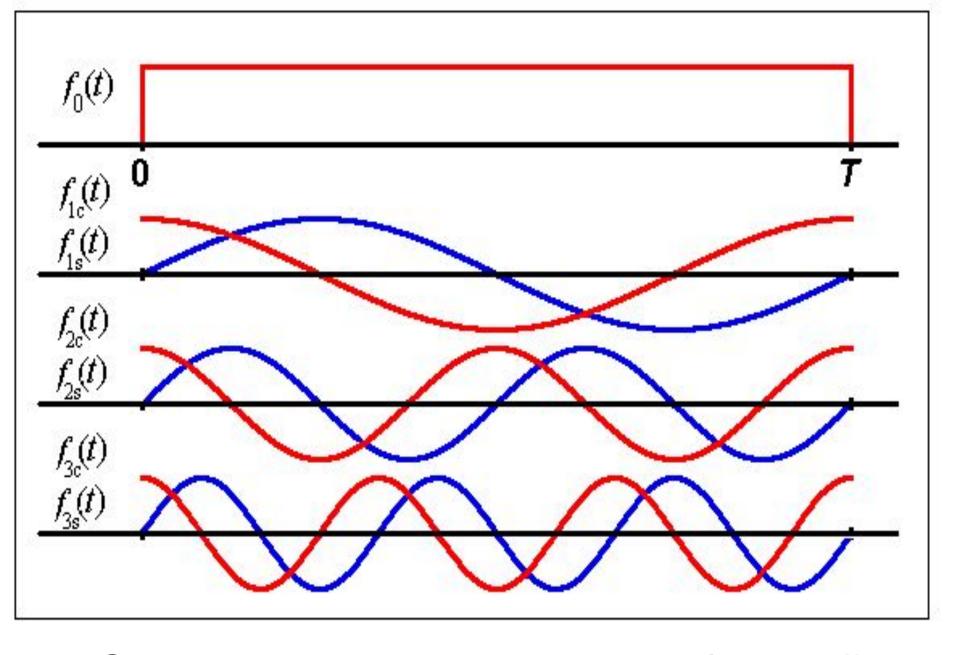
$$f_{0}(t) = \frac{1}{T};$$

$$f_{1s}(t) = \frac{2}{T} * \sin(2\pi \frac{t}{T});$$

$$f_{1c}(t) = \frac{2}{T} * \cos(2\pi \frac{t}{T})$$

$$f_{ns}(t) = \frac{2}{T} * \sin(2\pi \frac{t}{T});$$

$$f_{ns}(t) = \frac{2}{T} * \cos(2\pi \frac{t}{T});$$



Система тригонометрических функций

$$c_0 = rac{1}{T} \int_0^T s(t) dt; \; \omega_0 = rac{2\pi}{T}; \; c_0$$
 - «постоянная составляющая» сигнала $a_n = rac{2}{T} \int_0^T s(t) \cos(n \omega_0 t) dt; \; b_n = rac{2}{T} \int_0^T s(t) \sin(n \omega_0 t) dt;$

$$s(t) = c_0 + \sum_{n=0}^{\infty} [a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)].$$

$$a_n = c_n \cos \varphi_n, \ b_n = c_n \sin \varphi_n, \ \varphi_n = \arcsin(b_n/a_n)$$

$$c_n = c_n \cos \varphi_n, \ o_n = c_n \sin \varphi_n, \ \varphi_n = \arcsin(o_n/a_n)$$

$$c_n = \sqrt{a_n^2 + b_n^2}$$

$$s(t) = c_0 + \sum_{n=0}^{\infty} c_n \cos(n \omega_0 t - \varphi_n).$$

 $s(t) = c_0 + \sum_{n=0}^{\infty} c_n \cos(n\omega_0 t - \varphi_n).$ c_n —амплитуда n-ой гармонической составляющей с частотой $\omega_n = n\omega_0$ и фазой φ_n . Частота первой гармоники $\omega_1 = \omega_0 = 2\pi/T$ — это частота повторения

Экспоненциальная форма тригонометрического ряда Фурье

По формулам Эйлера
$$\cos x = \frac{e^{jx} + e^{-jx}}{2}$$
, $\sin x = \frac{e^{jx} - e^{-jx}}{2j}$

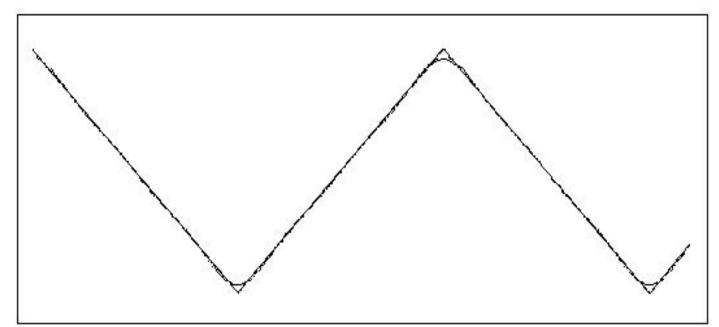
где j – мнимая единица. Положим $\boldsymbol{\varphi}_{-n}$ = – $\boldsymbol{\varphi}_{n}$

$$s(t) = \sum_{n=-\infty}^{\infty} C_n \exp(jn\omega_0 t), \ C_n = c_n \exp(j\varphi_n)$$
 - это комплексные

амплитуды

$$C_n = \frac{1}{T} \int_0^T s(t) \exp(-jn\omega_0 t) dt.$$

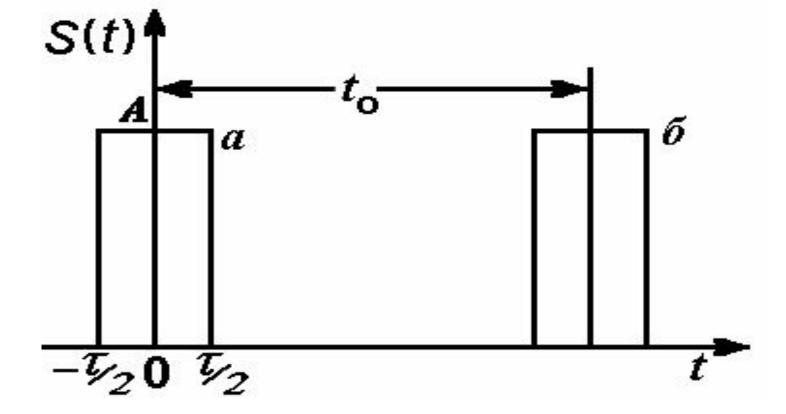
 $a_n = 2 \operatorname{Re} C_n$, $b_n = 2 \operatorname{Im} C_n$. a_n - действительная часть спектра, b_n - мнимая часть спектра



Разложение треугольного импульса амплитудой *А* в тригонометрический ряд, содержащий 4 члена

$$S(t) = \frac{A}{2} + \frac{4A}{\pi^2} \cos(2\pi t/T) + \frac{4A}{9\pi^2} \cos(6\pi t/T) + \frac{4A}{25\pi^2} \cos(10\pi t/T).$$

Погрешность аппроксимации импульса s(t) рядом с 4 членами составляет $\delta = 2,72$ %, при 20 членах $\delta = 0,29$ %.

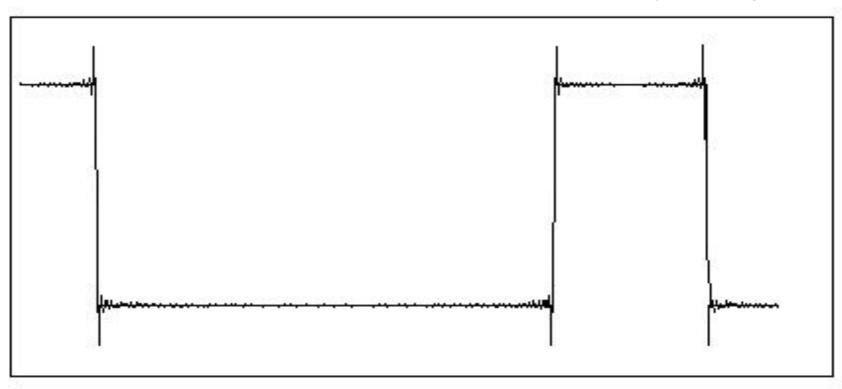


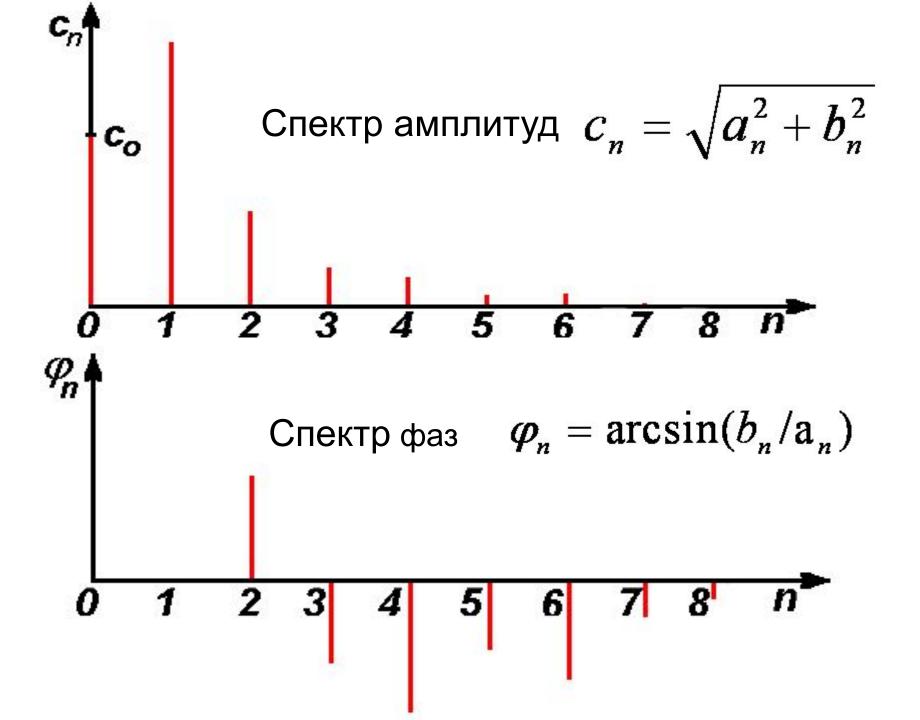
$$C_{n} = \frac{1}{T} \int_{-\tau/2}^{\tau/2} A \exp\left(jn\frac{2\pi}{T}t\right) dt = \frac{A}{T} \cdot \frac{T}{2\pi jn} \left[\exp\left(jn\frac{2\pi}{T}\frac{\tau}{2}\right) - \exp\left(-jn\frac{2\pi}{T}\frac{\tau}{2}\right) \right]$$

$$C_n = \frac{A}{\pi n} \sin\left(\frac{n\pi}{q}\right).$$

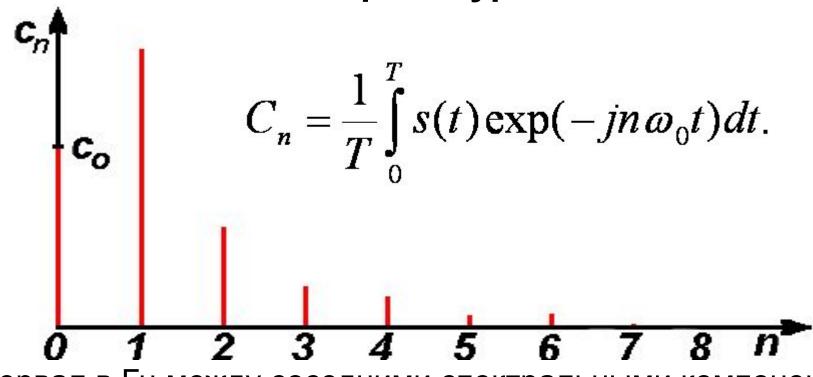
Тригонометрический ряд для разрывных функций, сходится значительно медленнее.

Разложение периодической последовательности прямоугольных импульсов со скважностью q = 4 при 140 членах ряда, погрешность аппроксимации составляет $\delta = 6,38$ % (*скважность* q = 3 отношение периода к длительности импульса).





Обобщение на непериодические сигналы. Интеграл Фурье



Интервал в Гц между соседними спектральными компонентами составляет $\Delta f = n/T - (n-1)/T = 1/T$.

$$TC_{n} = \frac{T}{T} \int_{-T/2}^{T/2} s(t) \exp(-jn\omega_{0}t) dt. \quad \frac{C_{n}}{\Delta f} = F(j\omega) = \int_{-T/2}^{T/2} s(t) \exp(-jn\omega_{0}t) dt.$$

$$\Delta f \to 0, T \to \infty$$

При
$$T \to \infty$$
 $n \frac{2\pi}{T} \to \omega$, $F(j\omega) = \int_{-\infty}^{\infty} s(t) \exp(-j\omega t) dt$.

$$s(t) = \sum_{n=-\infty}^{\infty} \frac{C_n}{\Delta f} \exp(jn\omega_0 t) \Delta f.$$

Устремим $\Delta f \longrightarrow 0$. Предельный переход имеет смысл, так как

$$E = \int_{-\infty}^{\infty} |s(t)|^2 dt < \infty$$
, или даже $\int_{-\infty}^{\infty} |s(t)| dt < \infty$

$$\Delta f \to df, \ s(t) = \int_{-\infty}^{\infty} F(j\omega) \exp(j\omega t) \frac{2\pi df}{2\pi}.$$

$$s(t) = \int_{-\infty}^{\infty} F(j\omega) \exp(j\omega t) \frac{d\omega}{2\pi}, F(j\omega) = \int_{-\infty}^{\infty} s(t) \exp(-j\omega t) dt.$$

Свойства преобразования Фурье

1. Преобразование Фурье – линейное, так как интегралы Фурье – это предел суммы.

$$S(t) = s_1(t) + s_2(t), F_1(j\omega)$$
 спектр сигнала $s_1(t), F_2(j\omega)$ спектр $s_2(t)$, спектр суммы $F(j\omega) = F_1(j\omega) + F_2(j\omega)$. Если $S(t) = ks(t)$, то при $G(j\omega) = kF(j\omega)$.

$$S(t) = \frac{ds(t)}{dt} = \int_{-\infty}^{\infty} j\omega F(j\omega) \exp(j\omega t) \frac{d\omega}{2\pi}.$$

$$S(t) = \int_{-\infty}^{\infty} s(t)dt = \int_{-\infty}^{\infty} F(j\omega) \frac{1}{j\omega} \exp(j\omega t) \frac{d\omega}{2\pi}.$$

$$G(\omega) = \int_{-\infty}^{\infty} s(t - t_0) \exp(j\omega t) dt = \int_{-\infty}^{\infty} S(z) \exp[j\omega(z + t_0)] dz = F(\omega) \exp(j\omega t_0).$$

2.
$$\int_{-\infty}^{\infty} [A(\omega) + jB(\omega)] \cdot (\cos \omega t + j \sin \omega t) \frac{d\omega}{2\pi}$$

Из равенства нулю мнимой части и ортогональности функций $\cos \omega t$ и $\sin \omega t$ следует, что

$$\int_{-\infty}^{\infty} A(\omega) \sin \omega t \frac{d\omega}{2\pi} = 0, \qquad \int_{-\infty}^{\infty} B(\omega) \cos \omega t \frac{d\omega}{2\pi} = 0.$$

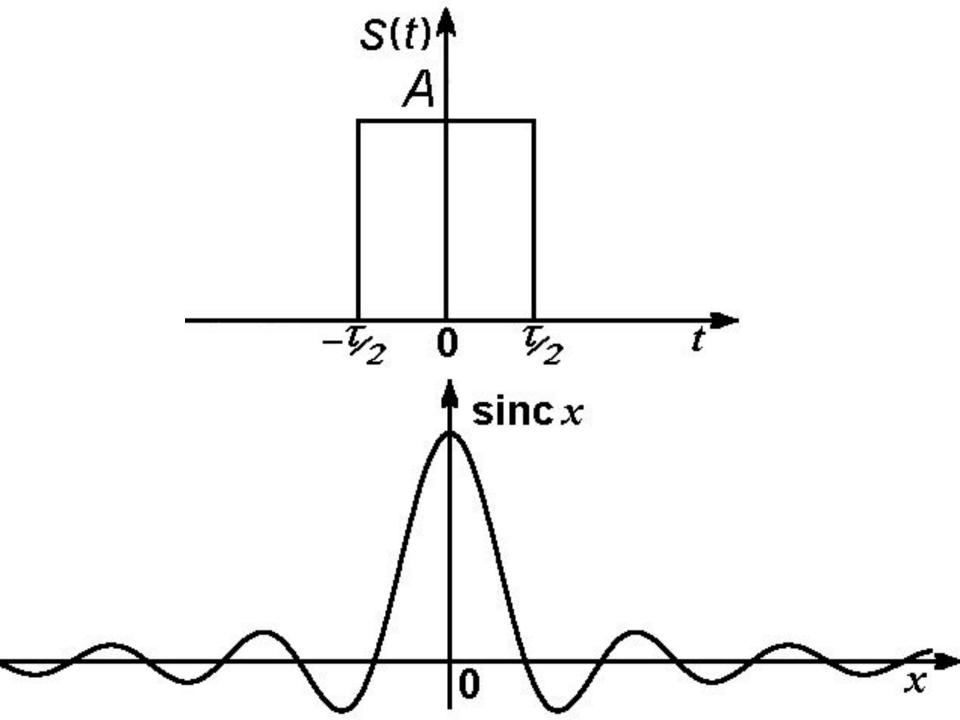
$$A(\omega) = A(-\omega), B(-\omega) = -B(\omega).$$

$$3.(s_1, s_2) = \int_{-\infty}^{\infty} s_1(t)s_2(t)dt = \int_{-\infty-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} F_1(\omega_1)F_2(\omega_2) \exp[j(\omega_1 + \omega_2)t]dtd\omega_1 / 2\pi^{d\omega_2} / 2\pi$$

$$E = \int_{-\infty}^{\infty} |s(t)|^2 dt = \int_{-\infty}^{\infty} |F(\omega)|^2 \frac{d\omega}{2\pi}.$$

$$\int_{\Delta\Omega_2}^{\Delta\Omega_2} |F(\omega)|^2 d\omega/2\pi = 0.95 \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega/2\pi.$$

4.
$$F_2(\omega) = \int_0^{\infty} s_1(kt) \exp(-j\omega t) dt = \frac{1}{k} \int_0^{\infty} s_2(y) \exp(-j\omega y/k) dy = \frac{1}{k} F_1(\omega/k)$$
.

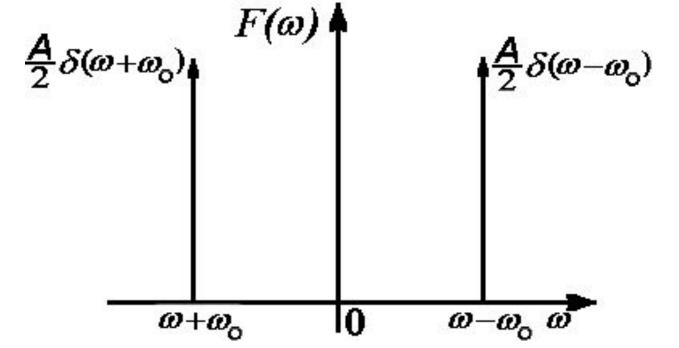


5. Из п.4 следует, что длительность сигнала и ширина спектра связаны между собой. Произведение ΔΩ ·ΔT = В носит название базы сигнала. Для обычных сигналов, у которых отсутствуют быстрые изменения величины сигнала в пределах длительности, В ~ 1. Таким образом, импульс длительностью 1 мксек = 10⁻⁶ с имеет ширину спектра порядка 10⁶ Гц = 1 МГц. Для финитных сигналов (т.е. конечной длительности)

Для финитных сигналов (т.е. конечной длительности) полная ширина спектра, если подходить строго, всегда величина бесконечная, и наоборот.

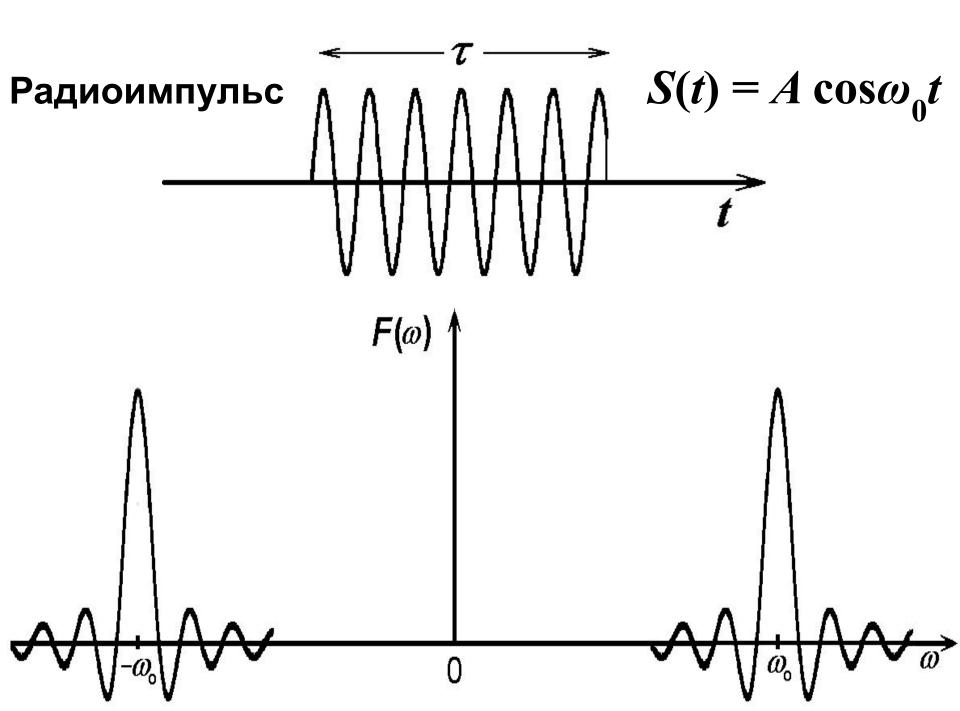
6. Спектральную плотность косинусоиды $s(t) = A\cos\omega_0 t$. Строго говоря, это не вполне законная операция, так как такой сигнал не принадлежит пространству H^2 , он имеет бесконечно большую энергию. По формуле Эйлера: $A\cos\omega_{\scriptscriptstyle h}t = \frac{1}{2} \left[(\exp(j\omega_{\scriptscriptstyle h}t) + \exp(-j\omega_{\scriptscriptstyle h}t)) \right]$.

$$F(\omega) = \frac{A}{2} \int_{-\infty}^{\infty} \exp[i(\omega - \alpha_0)t] dt + \frac{A}{2} \int_{-\infty}^{\infty} \exp[-j(\omega + \alpha_0)t] dt = \frac{A}{2} [\delta(\omega - \alpha_0) + \delta(\omega + \alpha_0)]$$

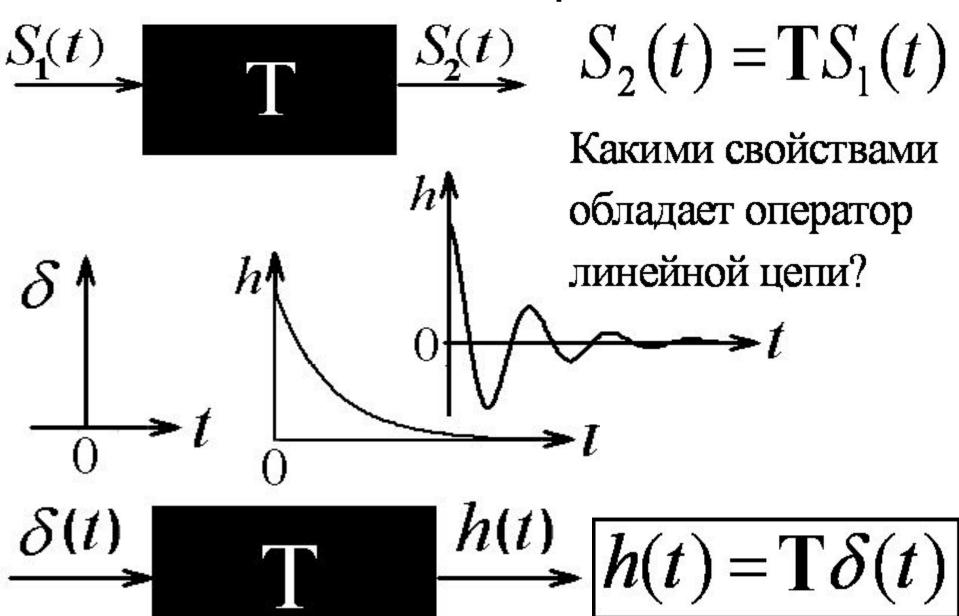


Наличие пиков указывает на периодичность. Одна из причин применения ряда Фурье и интеграла Фурье – необходимость выявления периодичности

7.
$$S(t) = s_1(t) \cdot s_2(t);$$
 $G(\omega) = \int_{-\infty}^{\infty} F_1(\omega_1) F_2(\omega - \omega_1) \frac{d\omega}{2\pi}.$ Свертка
$$G(\omega) = F_1(\omega) \cdot F_2(\omega) \qquad S(t) = \int_{-\infty}^{\infty} s_1(t_1) s_2(t - t_1) dt_1$$



Линейные цепи



$$S_{1}(t) = \int_{-\infty}^{\infty} \delta(t_{1}) S_{1}(t-t_{1}) dt_{1} = \int_{-\infty}^{\infty} \delta(t-t_{1}) S_{1}(t_{1}) dt_{1}$$

$$S_{2}(t) = \mathbf{T} \int_{1}^{\infty} \delta(t_{1}) S_{1}(t-t_{1}) dt_{1} = \mathbf{T} \int_{1}^{\infty} \delta(t-t_{1}) S_{1}(t_{1}) dt_{1}$$

$$S_{2}(t) = \int_{-\infty}^{t} h(t_{1}) S(t-t_{1}) dt_{1} = \int_{-\infty}^{t} h(t-t_{1}) S(t_{1}) dt_{1}$$

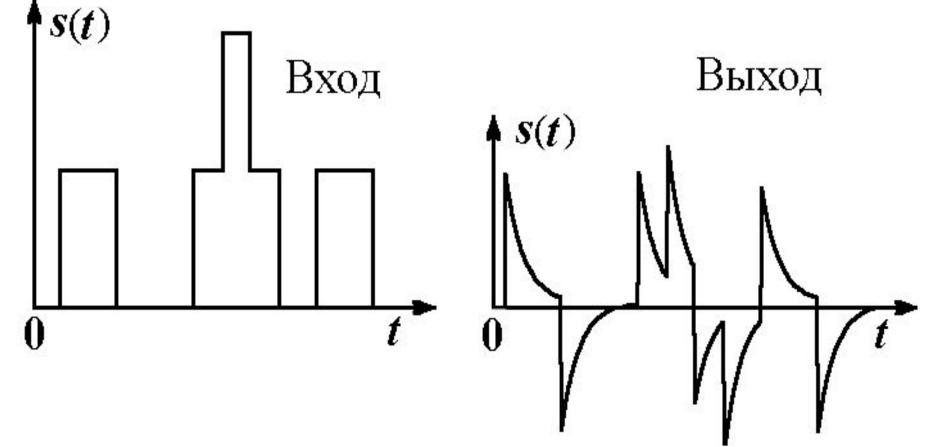
$$S(t) = \frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2} \qquad S_1 = e^{j\omega_0 t}$$

$$S_2 = \int_{-\infty}^{\infty} h(t_1) e^{j\omega_0(t-t_1)} dt_1 = e^{j\omega t} \int_{-\infty}^{\infty} h(t_1) e^{-j\omega_0 t_1} dt_1$$

$$K(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega_0 t_1} dt \ K(j\omega) = K(\omega)e^{j\varphi(\omega)}$$

Амплитудно-частотная характеристика показывает, как изменилась амплитуда

Фазо-частотная характеристика показывает величину задержки фазы на выходе



Сигналы несинусоидальной формы искажаются линейными цепями. У сигналов синусоидальной формы изменяется амплитуда, происходит задержка по фазе, но форма не меняется. Синусоидальные сигналы – собственные функции линейных систем.

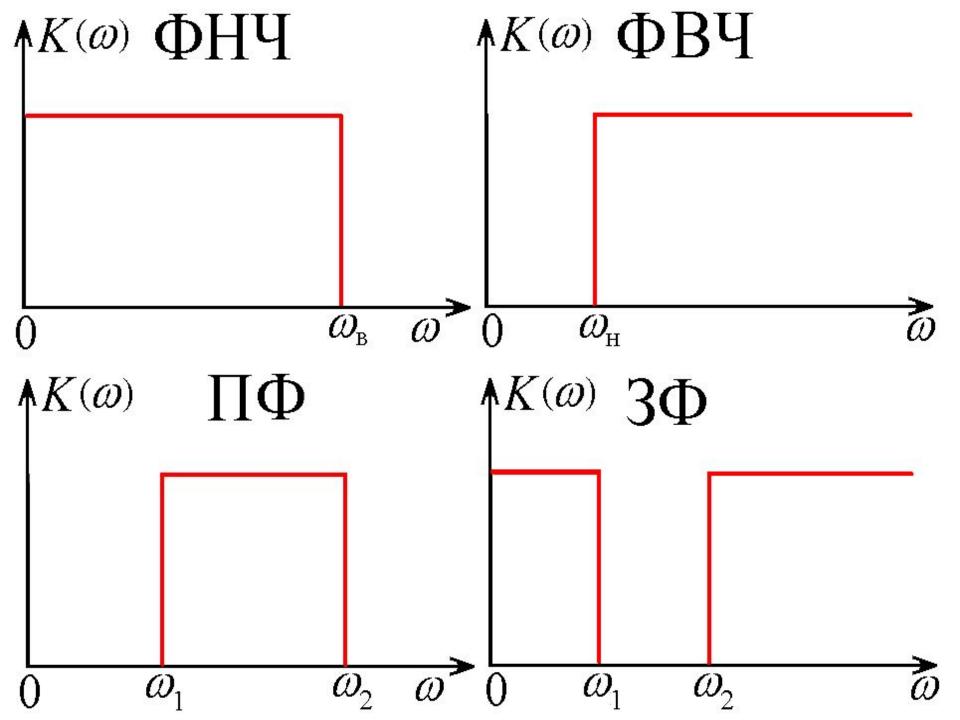
$$A_1\cos(\omega_0 t)$$
 $A_2\cos[\omega_0 t + \varphi(\omega_0)]$
 $\Delta t = \varphi(\omega_0)/\omega_0$

Вход $A_1\cos(\omega_0 t)$

од
$$A_1 \cos \omega_0 t$$

Выход $A_2 \cos \left[\omega_0 t - \varphi(\omega_0)\right]$

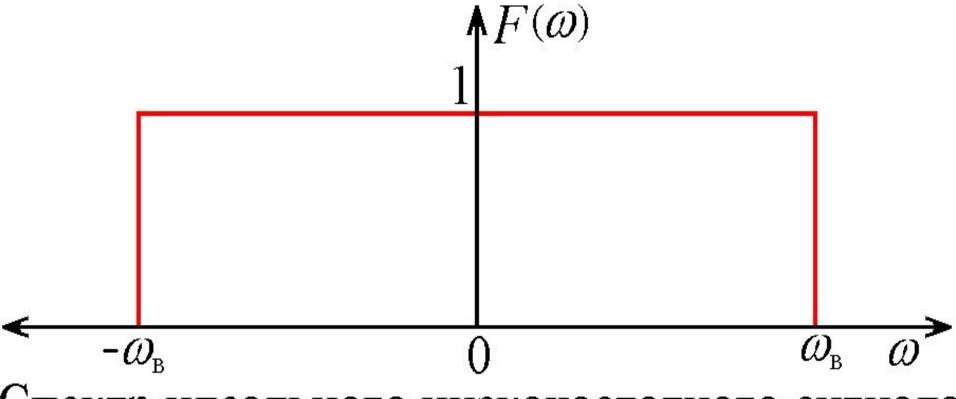
Измерение амплитудночастотной характеристики



$$s(t-t_0) \longrightarrow F(\omega) \exp(j\omega t_0)$$

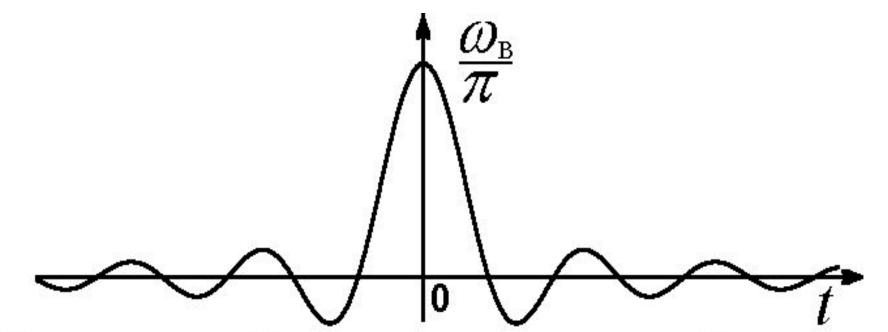
$$(s_1, s_2) = \int_{-\infty}^{\infty} s_1(t) s_2(t) dt = \int_{-\infty}^{\infty} F(\omega) F_2^*(\omega) d\omega / 2\pi$$

Дискретизация сигналов по Котельникову



Спектр идеального низкочастотного сигнала

$$S_{\text{инч}}(t) = 1 \cdot \int_{-\omega}^{\omega_{\text{B}}} \exp(j\omega t) \frac{d\omega}{2\pi} = \frac{\omega_{\text{B}}}{\pi} \cdot \frac{\sin \omega_{\text{B}} t}{\omega_{\text{B}} t}$$

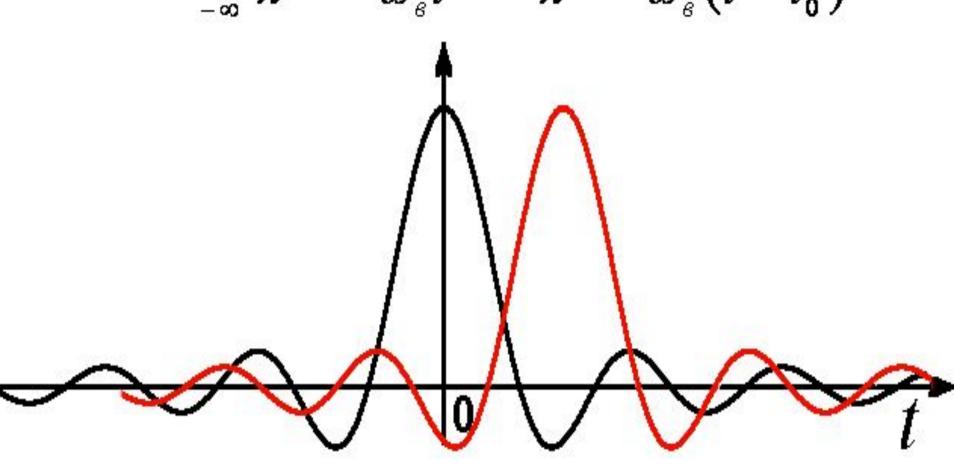


Идеальный низкочастотный сигнал

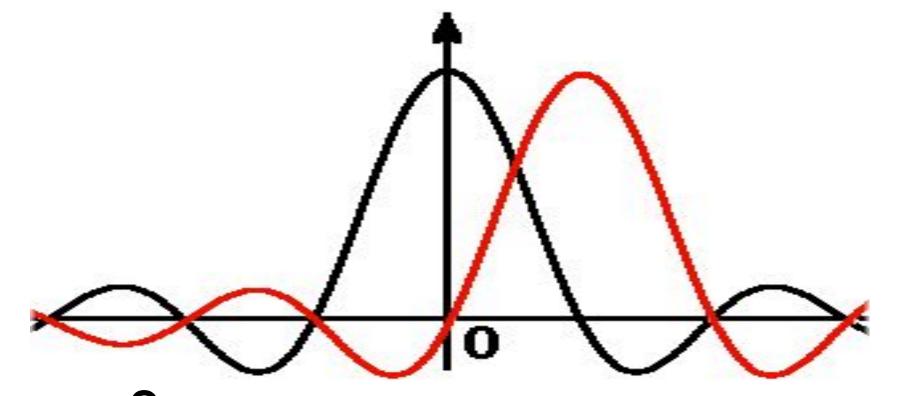
$$S_{_{\mathbf{H}\mathbf{H}\mathbf{H}}}(t) = \frac{\omega_{_{\mathbf{B}}}}{\pi} \cdot \frac{\sin \omega_{_{\mathbf{B}}}t}{\omega_{_{\mathbf{D}}}t}$$

Скалярное произведение:

$$(s_1, s_2) = \int_{-\infty}^{\infty} \frac{\omega_e}{\pi} \cdot \frac{\sin(\omega_e t)}{\omega_e t} \cdot \frac{\omega_e}{\pi} \cdot \frac{\sin(\omega_e (t - t_0))}{\omega_e (t - t_0)} dt$$



$$(s_1, s_2) = \int_{-\omega_s}^{\omega_s} F(\omega) \cdot F^*(\omega) \exp(j\omega t_0) \frac{d\omega}{2\pi}$$
 $(s_1, s_2) = \frac{\omega_{_{\rm B}}}{\pi} \cdot \frac{\sin(\omega_{_{\rm B}} t_0)}{\omega_{_{\rm B}} t_0}, (s_1, s_2) = 0, \text{ если } \omega_{_{\rm B}} t_0 = n \cdot \pi$

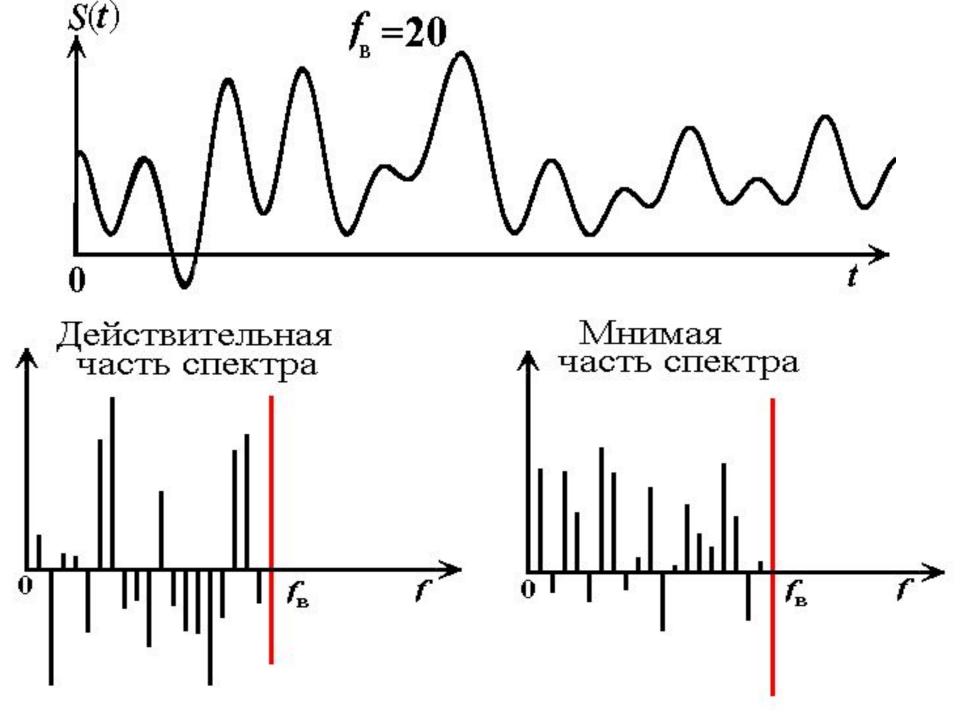


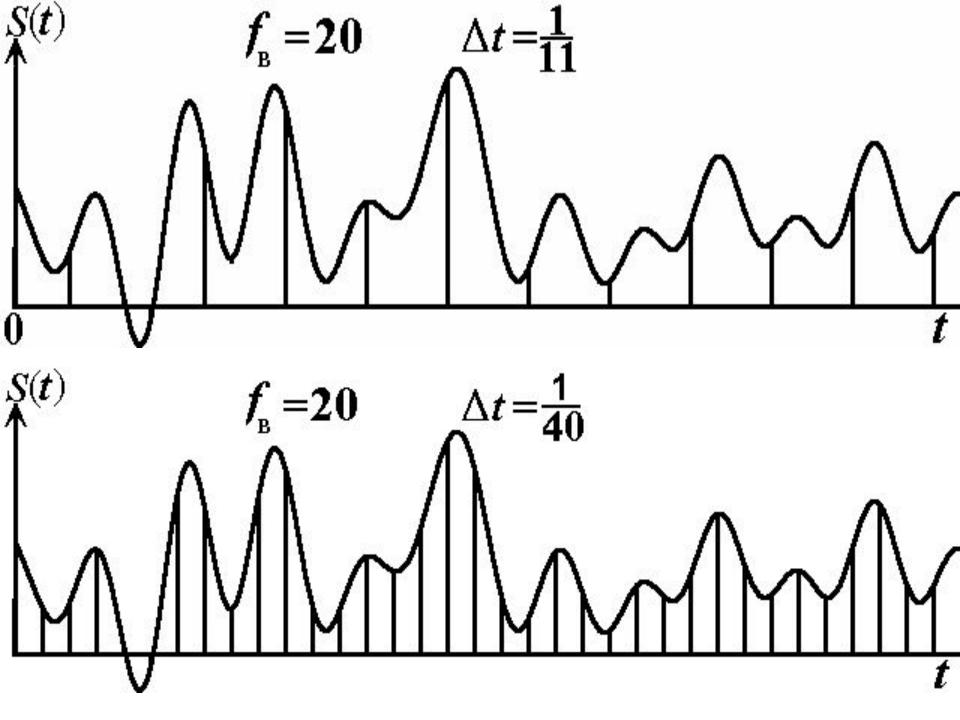
Эти сигналы ортогональные

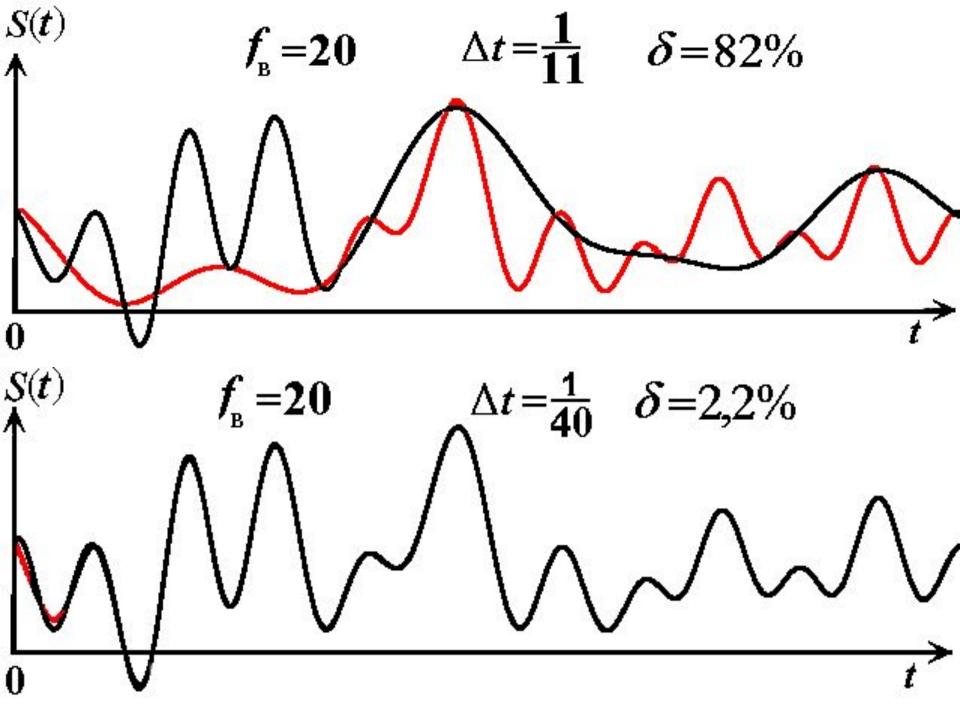
$$\omega_{\text{\tiny B}} t_0 = n \cdot \pi$$
, T.e. $t_0 = \frac{n \cdot \pi}{2\pi f_{\text{\tiny B}}}$. $\Delta t = \frac{1}{2f_{\text{\tiny B}}}$

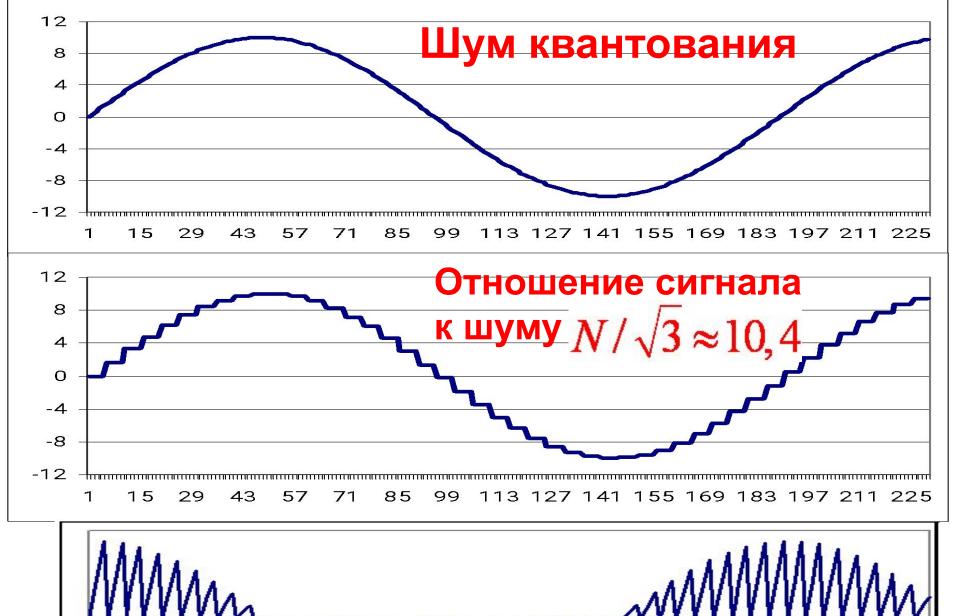
$$S(t) = \sum_{n=-\infty}^{\infty} c_n K_n K_n(t) = \frac{\omega_B}{\pi} \cdot \frac{\sin[\omega_B(t-n\Delta t)]}{\omega_B(t-n\Delta t)}$$

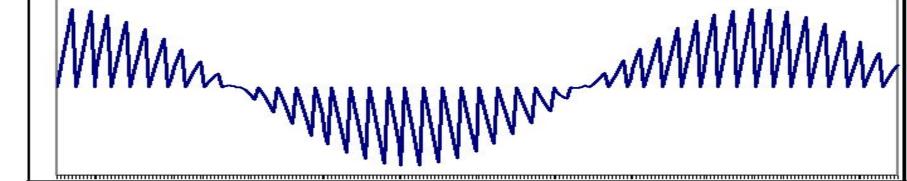
$$c_n = \int_{-\infty}^{\infty} s(t) \mathbf{K}_n(t)$$











$$S_{\text{VM}}(t) = A_0 \cos(\omega_0 t + \Delta\omega\cos\Omega t),$$

Полная фаза:
$$\Psi(t) = \omega_0 t + \int \Delta \omega \cos \Omega t dt = \omega_0 t + \frac{\Delta \omega}{\Omega} \sin \Omega t$$
.

$$\frac{\Delta\omega}{\Omega} = \beta$$
 — индекс угловой модуляции

$$S_{\text{VM}}(t) = A_0 \operatorname{Re} \left[\exp(j\omega_0 t) \cdot \exp(j\beta \sin \Omega t) \right],$$

$$\exp(j\beta\sin\Omega t) = \sum_{k} J_{k}(\beta)\exp(jk\Omega t),$$

$$S_{\text{VM}}(t) = A_{\text{O}} \sum_{k=1}^{\infty} J_{k}(\boldsymbol{\beta}) \cdot \cos[(\boldsymbol{\omega_{0}} + k\Omega t)t]$$

$J_0(x)$ $J_1(x)$ $J_2(x)$

$$J_{k}(x) = \sum_{m=0}^{\infty} (-1)^{m} \frac{(x/2)^{2m+k}}{m!(m+k)!}$$

$$S_{\text{TM}}(t) = A_{\text{D}} \sum_{k=-\infty}^{\infty} J_{k}(\beta) \cdot \cos[(\omega_{0} + k\Omega t)t]$$

$$\uparrow A_{0} J_{k}(\beta)$$

$$\omega_{0} - 3\Omega$$

$$\omega_{0} - 2\Omega \omega_{0} - \Omega \omega_{0} \omega_{0} + \Omega \omega_{0} + 2\Omega$$

При
$$k \le \beta + 1$$
 $J_k(\beta) \approx 0$, ширина спектра $\Delta \omega_{yM} \approx 2\Omega(\beta + 1)$, при $\beta >> 1$ $\Delta \omega_{yM} \approx 2\beta\Omega = 2\Delta\omega$.

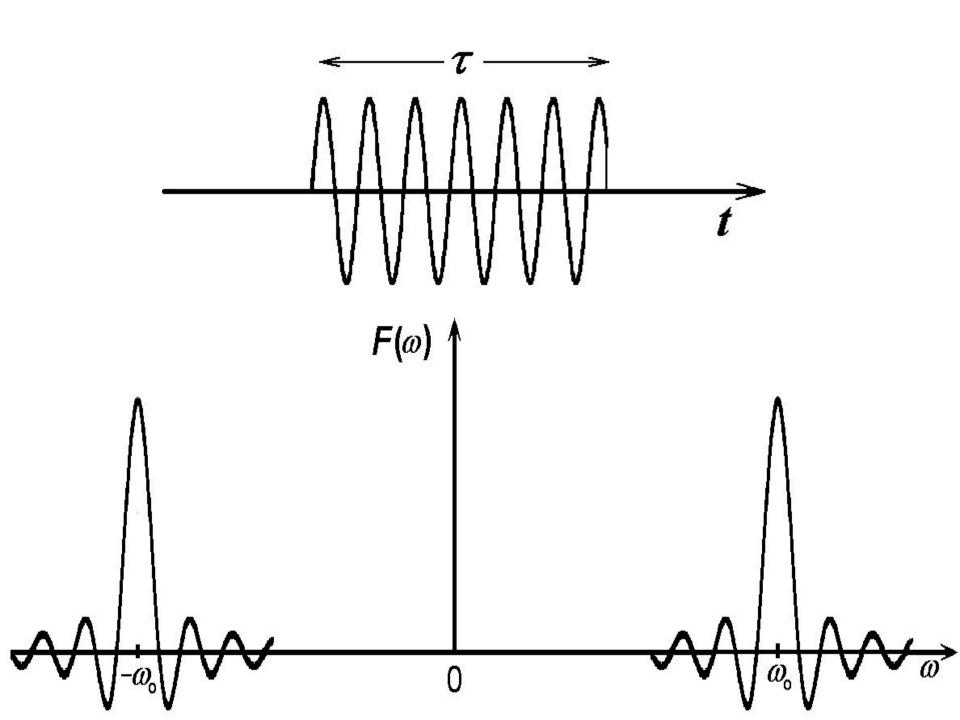
$$S_{\text{YM}} = A_0 \cos(\omega_0 t + \beta \sin \Omega t), \beta << 1,$$

$$S_{\text{YM}} = A_0 \cos(\beta \sin \Omega t) \cos \omega_0 t - A_0 \sin(\beta \sin \Omega t) \sin \omega_0 t$$

$$\cos(\beta \sin \Omega t) \approx 1, \sin(\beta \sin \Omega t) \approx \beta \sin \Omega t$$

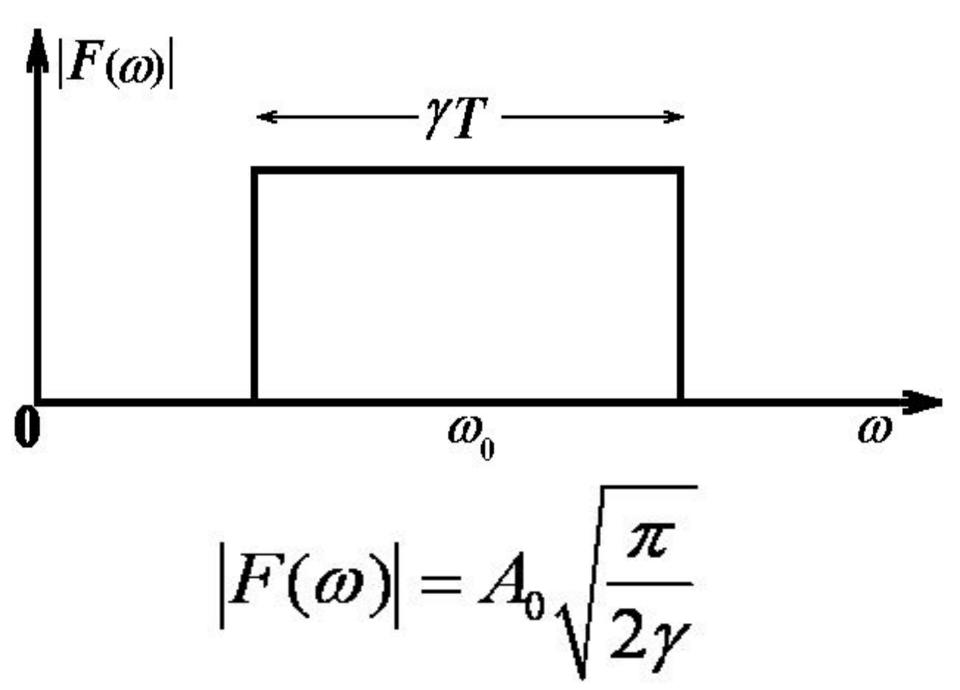
$$S_{\text{YM}} \approx A_0 \cos \omega_0 t + \frac{\beta A_0}{2} \cos(\omega_0 - \Omega) t - \frac{\beta A_0}{2} \cos(\omega_0 + \Omega) t$$

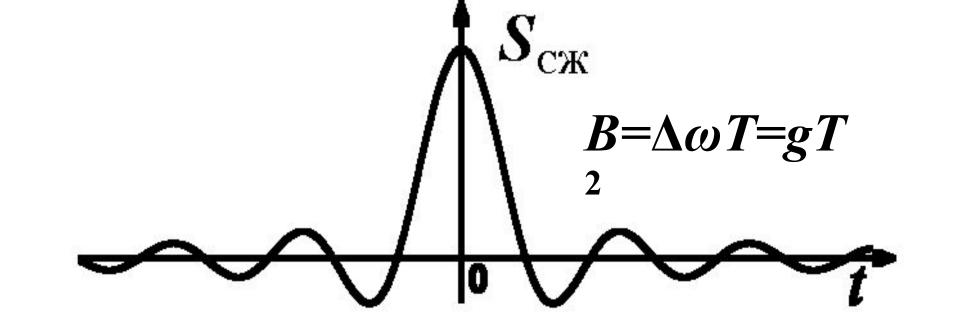
$$S_{\text{AM}} \approx A_0 \cos \omega_0 t + \frac{\beta A_0}{2} \cos(\omega_0 - \Omega)t + \frac{\beta A_0}{2} \cos(\omega_0 + \Omega)t$$



$$S(t) = A_0 \cos \left(\omega_0 t + \frac{\gamma t^2}{2}\right)$$
, девиация $\Delta \omega = \frac{\gamma T}{2}$

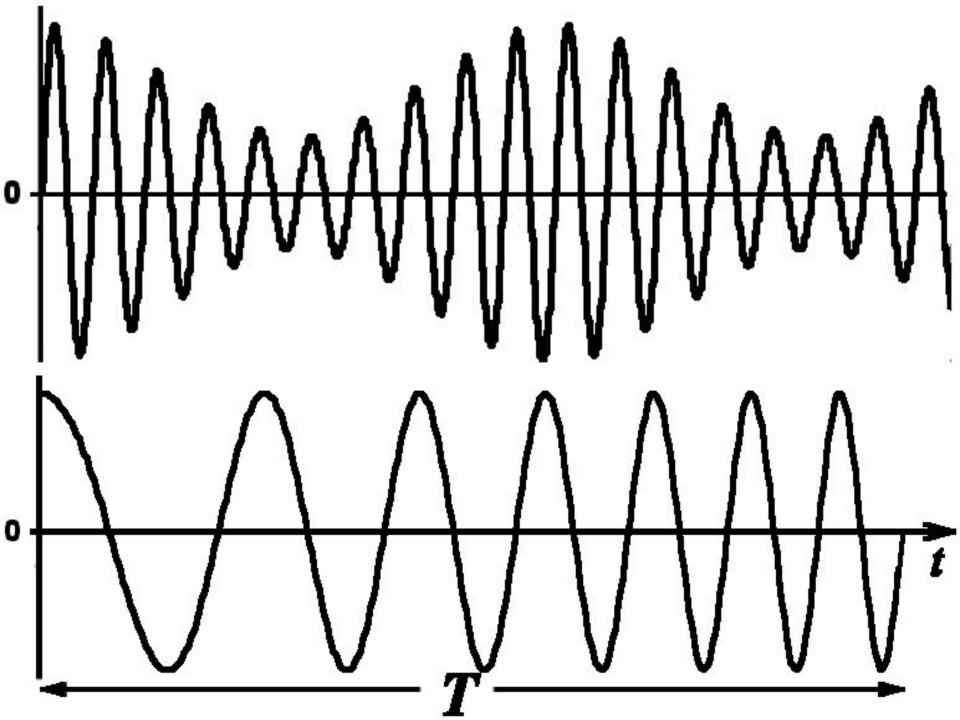
Сигнал с линейной частотной модуляцией





$$S_{\text{CM}}(t) = \int_{-\tau/2}^{\tau/2} A_0 \cos \left[\omega_0 t_1 + \frac{\gamma t_1^2}{2} \right] A_0 \cos \left[\omega_0 (t - t_1) + \frac{\gamma (t - t_1)^2}{2} \right] dt_1$$

$$S_{\text{CM}}(t) = \frac{A_0^2 T}{2} \cdot \frac{\sin \left(\frac{\gamma T}{2} t \right)}{\left(\frac{\gamma T}{2} t \right)} \cos \omega_0 t, \quad \Delta \tau = \frac{2\pi}{\gamma T}$$



OГИБАЮЩАЯ U(t)

- 1. $U(t) \ge 0$
- 2. $U(t) \ge |s(t)|$

3. Ecmu
$$U(t)=|s(t)|$$
, to $\frac{dU(t)}{dt}=\frac{d|s(t)|}{dt}$

- 4. Малым вариациям s(t) соответствуют малые вариации U(t)
- 5. Если $s(t) = A_0 \cos \omega_0 t$, то $U = A_0$
- 6. Частота и фаза не зависят от U.

$$s(t) = U(t) \cdot \exp[j\varphi(t)]; Z(t) = s(t) + j\tilde{s}(t);$$

$$s(t) = U(t) \cdot \exp[j\varphi(t)]; \ Z(t) = s(t) + j\tilde{s}(t);$$
$$U(t) = \sqrt{s^2(t) + \tilde{s}^2(t)}; \ \varphi(t) = \arctan\frac{\tilde{s}(t)}{s(t)}.$$

Преобразование Гильберта:
$$\tilde{s}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{s(t_1)}{t - t_1} dt_1$$
.

Сравним:
$$s_1(t) = \int_{-\infty}^{t} s(t)h(t-t_1)dt_1$$

Импульсная характеристика, соответствующая

преобразованию Гильберта:
$$h_{\Gamma}(t) = \frac{1}{\pi t}$$
.

$$\partial t)dt =$$

$$(t)dt =$$

$$\partial t)dt =$$

$$K_{\Gamma}(j\omega) = \int_{-\infty}^{\infty} \frac{1}{\pi t} \cdot \exp(-j\omega t) dt =$$

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\cos \omega t}{t} dt - \frac{j}{\pi} \int_{-\infty}^{\infty} \frac{\sin \omega t}{t} dt = -\frac{j}{\pi} \int_{-\infty}^{\infty} \frac{\sin \omega t}{t} dt.$$

$$v(t)dt =$$

$$\partial t)dt =$$

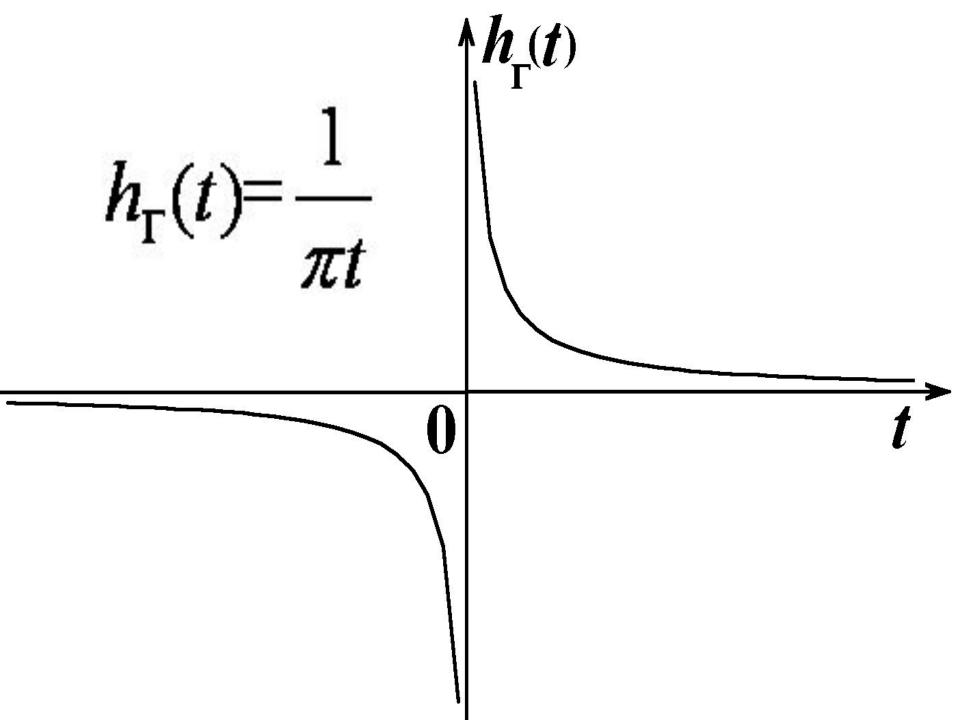
 $K_{\Gamma}(j\omega) = \int \frac{1}{\pi t} \cdot \exp(-j\epsilon)$

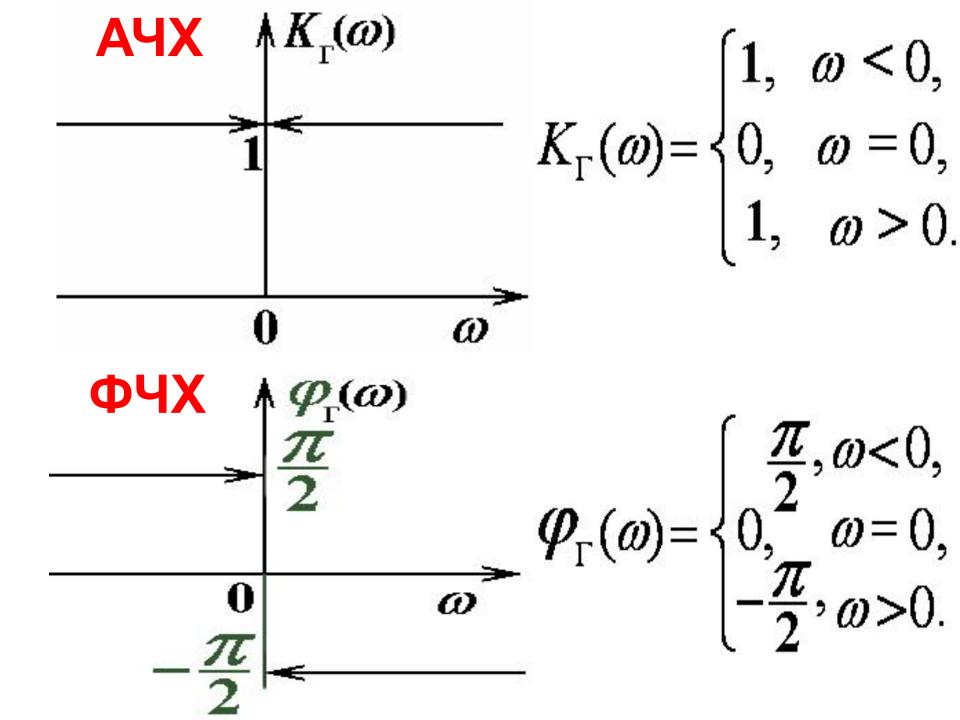
Commence	\ T.	
ωi)dt	20 - 1 20 - 1

 $-\int_{-\infty}^{\infty} \frac{\sin \omega t}{t} dt = \begin{cases} \pi, & \omega < 0, \\ 0, & \omega = 0, \\ -\pi, & \omega > 0. \end{cases}$

 $K_{\Gamma}(j\omega) = \begin{cases} j, & \omega < 0, \\ 0, & \omega = 0, \\ -j, & \omega > 0. \end{cases}$

$$\omega t)dt =$$





Функция, сопряженная по Гильберту с $s(t) = A_0 \cos(\boldsymbol{\omega}_0 t + \boldsymbol{\varphi}_0)$:

$$\tilde{s}(t) = A_0 \cos(\boldsymbol{\omega}_0 t + \boldsymbol{\varphi}_0 - \frac{\boldsymbol{\pi}}{2}) = A_0 \sin(\boldsymbol{\omega}_0 t + \boldsymbol{\varphi}_0).$$

Функция, сопряженная по Гильберту с рядом Фурье:

$$\tilde{s}(t) = c_0 + \sum_{n=0}^{\infty} c_n \sin(n\omega_0 t + \varphi_n).$$

Обратное преобразование Гильберта:

$$s(t) = -\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\tilde{s}(t_1)}{t - t_1} dt_1.$$

Импульсная характеристика:

$$\tilde{h}_{\Gamma}(t) = -\frac{1}{\pi t}$$

$$\tilde{K}_{\Gamma}(j\omega) = \begin{cases} -j, & \omega < 0, \\ 0, & \omega = 0, \\ j, & \omega > 0. \end{cases}$$

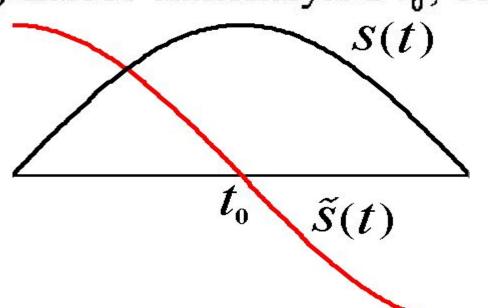
Свойства преобразования Гильберта:

1. Это линейное преобразование:

$$H[p \cdot s_1(t) + q \cdot s_2(t)] = p \cdot \tilde{s}_1(t) + q \cdot \tilde{s}_2(t).$$

2. Ядро преобразования Гильберта $\frac{1}{\pi t}$ нечетная функция, если s = const, то $\tilde{s} = 0$.

3. Если s(t) имеет максимум в t_0 , то $\tilde{s}(t_0)=0$.



Аналитический сигнал: $Z(t) = s(t) + j \cdot \tilde{s}(t)$.

$$U(t) = \sqrt{s^2(t) + \tilde{s}^2(t)} , \varphi(t) = \arctan \frac{\tilde{s}(t)}{s(t)},$$

$$\omega(t) = \frac{d\varphi(t)}{dt} = \frac{\tilde{s}'(t)s(t) - \tilde{s}(t)s'(t)}{s^2(t) + \tilde{s}^2(t)}.$$

Эти формулы справедливы и для узкополосных, и для широкополосных сигналов.

Для сигнала $s(t) = A_0 \cos \omega t$ представление в виде $s(t) = A_0 e^{j\omega t}$ и Z(t) совпадают.

Спектр аналитического сигнала

 $F(\omega)$ — спектр сигнала s(t). $\tilde{s}(t)$ получен с помощью линейного преобразования

$$K_{\Gamma}(j\omega) = \begin{cases} j, & \omega < 0, \\ 0, & \omega = 0, \\ -j, & \omega > 0. \end{cases}$$

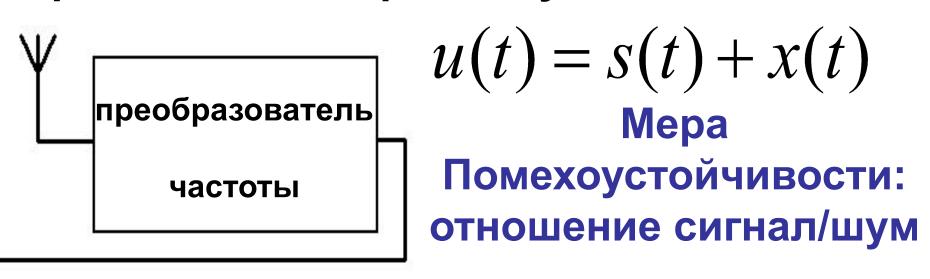
При
$$\omega > 0 \ \tilde{F}(\omega) = -jF(\omega)$$
, при $\omega < 0$ $\tilde{F}(\omega) = jF(\omega)$.

$$F_{Z}(\omega) = \begin{cases} F(\omega) + j(-j)F(\omega) = 2F(\omega), & \omega > 0 \\ F(\omega) + j \cdot jF(\omega) = 0, & \omega < 0. \end{cases}$$

Спектр аналитического сигнала существует только при положительных частотах.

ПОМЕХОУСТОЙЧИВОСТЬ ПРИ ДЕТЕКТИРОВАНИИ

Помехоустойчивость – способность противостоять вредному влиянию помех

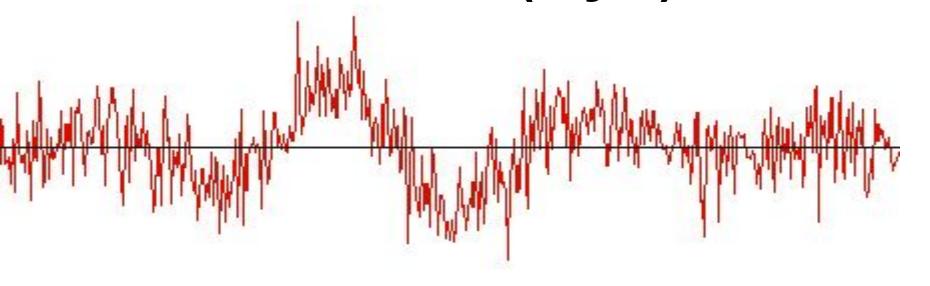


усилитель промежуточной частоты (УПЧ) ∆ω

детектор

усилитель низкой частоты (УНЧ) $\Delta \Omega$

Помеха (шум)

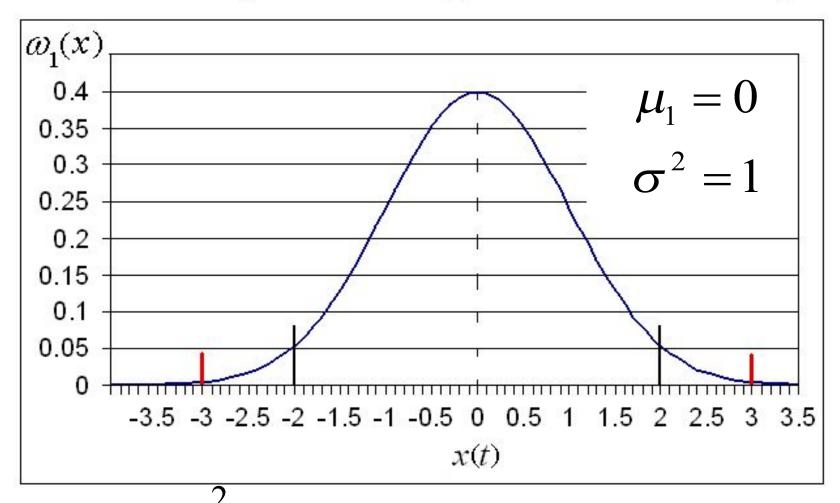


©читаем, что шум x(t) – стационарный случайный процесс с нормальным (гауссовским) законом распределения, нулевым средним. На входе УПЧ спектр мощности шума равен $W_0 = const$, т.е. это белый шум. Спектр мощности на выходе УПЧ

$$G(\omega) = W_0 K^2(\omega), \quad K^2(\omega) -$$
квадрат АЧХ

Нормальный (гауссовский) ССП

$$\omega_1(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2\sigma^2}(x-\mu_1)^2\right],$$



 u_1 — среднее, σ — дисперсия (средняя мощность) шума

$$\mu_1(t) = \int_{-\infty}^{\infty} x(t)\omega_1(x)dx, \ \sigma^2 = \int_{-\infty}^{\infty} [x(t) - \mu_1]^2 \omega_1(x)dx.$$

$$\int_{-\infty}^{\infty} [x(t) - \mu_1]^4 \omega_1(x) dx = 3\sigma^4$$

По теореме Винера-Хинчина

$$R(\tau) = \int_{-\infty}^{\infty} G(\omega) \exp(j\omega\tau) \frac{d\omega}{2\pi},$$

$$G(\omega) = \int_{-\infty}^{\infty} R(\tau) \exp(-j\omega\tau) d\tau.$$

Для белого шума

$$G(\omega) = W_0 K^2(\omega),$$

$$R(\tau) = W_0 \int_{-\infty}^{\infty} K^2(\omega) \exp(j\omega\tau) \frac{d\omega}{2\pi}$$

$$\sigma^2 = W_0 \int_{-\infty}^{\infty} K^2(\omega) \frac{\mathrm{d}\omega}{2\pi}.$$

Фазовый детектор

$$s(t) = V \cos[\omega_0 t + \beta \cos \Omega t]$$

$$\mathbf{x}(t) = A(t)\cos[\omega_0 t + \theta(t)]$$

$$u(t) = s(t) + x(t) = U(t)\cos[\omega_0 t + \varphi(t)].$$

Вход: отношение несущая/шум $h_{\text{BX}}^2 = \frac{v}{2\sigma^2}$

Полосовой фильтр УПЧ Амплитудный ограничитель

Фазовый детектор

$$U(t) = \sqrt{V^2 + A^2(t) + 2VA(t)\cos(\beta\cos\Omega t - \theta(t))},$$

$$tg(\varphi(t)) = \frac{V \sin(\beta \cos \Omega t) + A(t) \sin \theta(t)}{V \cos(\beta \cos \Omega t) + A(t) \cos \theta(t)}.$$

После ограничителя
$$U(t) = U_0 = const$$

$$u_0(t) = U_0 \cos[\omega_0 t + \varphi(t)]$$

Сильный сигнал : $h_{\text{BX}}^2 >> 1$

$$h_{\text{вх}}^2 = \frac{V^2}{2\sigma^2}$$
 – отношение несущей к шуму

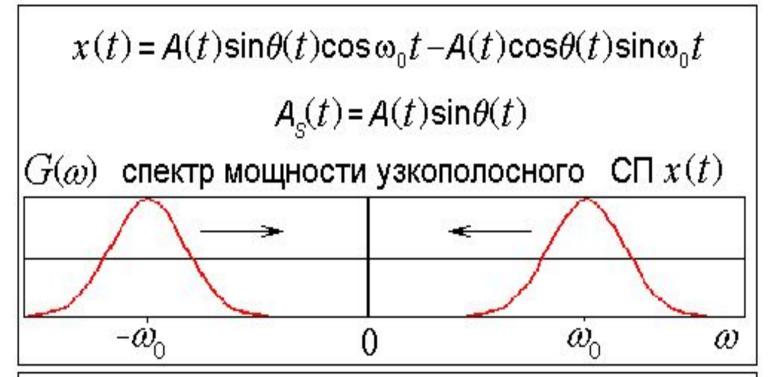
На выходе детектора: $s_{eblx}(t) = S\beta \cos \Omega t$.

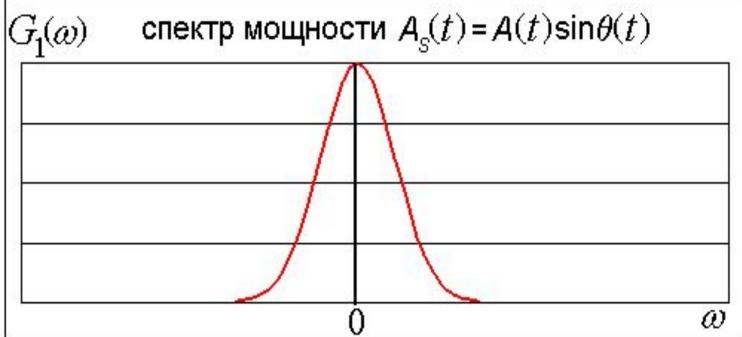
$$\varphi(t) \approx \arctan \frac{V \sin(\beta \cos \Omega t) + A(t) \sin \theta(t)}{V \cos(\beta \cos \Omega t)}$$

$$tg \varphi(t) = tg \frac{\beta \cos \Omega t}{\beta \cos \Omega t} + \frac{A(t) \sin \theta(t)}{V \cos(\beta \cos \Omega t)}$$

$$tg\,\varphi(t) = \frac{\pi}{4} + \frac{A(t)\sin\theta(t)}{V\cos(\beta\cos\Omega t)}$$

$$\varphi_{\Pi}(t) \approx \arctan \frac{A(t)\sin\theta(t)}{V} \approx \frac{A(t)\sin\theta(t)}{V}$$
.





Квадратурная компонента $A_s(t) = A(t) \sin \theta(t)$ имеет тот же з.р. и параметры, что и x(t)

$$< [A(t)\sin\theta(t)]^2 > = < x^2(t) > = \sigma^2$$
. $S=1$ В/рад

Шум на выходе $x_{\text{вых}}(t) = S \varphi_{\Pi}(t), \ \sigma_{\text{вых}}^2 = S^2 \frac{\sigma^2}{V^2}.$

$$h_{\text{BX}}^2 = \frac{V^2}{2\sigma^2}, h_{\text{BMX}}^2 = \frac{S^2\beta^2V^2}{2S^2\sigma^2} = \beta^2 h_{\text{BX}}^2.$$

Частотный детектор : $\beta = \frac{\omega_{\rm M}}{\Omega}$, $h_{\rm BMX}^2 = \frac{\Delta \omega^2}{\Lambda \Omega^2} h_{\rm BX}^2$.

Сигнал

амплитудная импульсная модуляция

$$s(t) = V(t) m \cos \omega_0 t$$
, $m=1$ или $m=0$ частотная модуляция $\omega_{\rm H} = \frac{\Delta \omega}{2}$, $\Omega = \frac{\Delta \Omega}{2}$

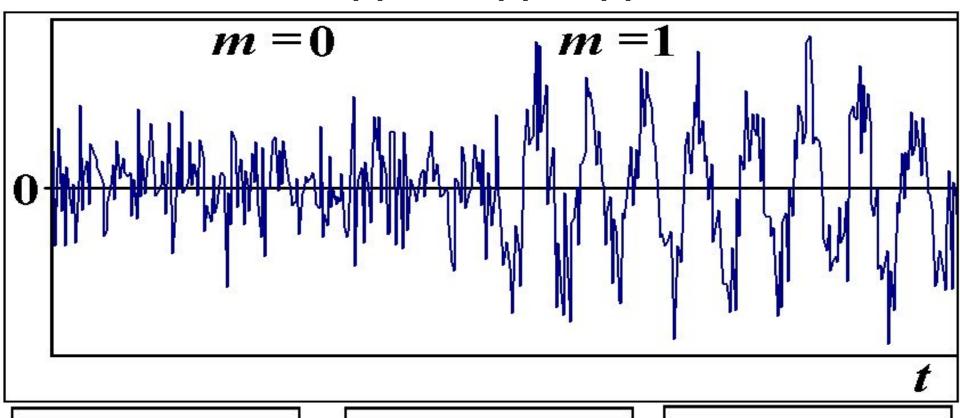
$$s(t) = V[\cos(\omega_0 + \omega_{\mathrm{A}}\cos\Omega t)t] = V[\cos\omega_0 t + \frac{\omega_{\mathrm{A}}}{\Omega}\cos\Omega t]$$
 фазовая модуляция $\beta = \frac{\omega_{\mathrm{A}}}{\Omega}$

фазовая модуляция
$$eta \! = \! rac{\omega_{\!\scriptscriptstyle
m I}}{\Omega}$$

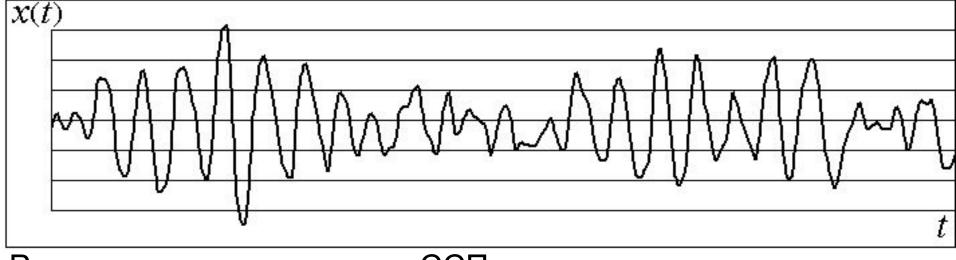
$$s(t) = V \cos[\omega_0 t + \beta \cos \Omega t]$$

V – амплитуда несущей

Амплитудный линейный детектор z(t)=ms(t)+x(t)



усилитель промежуточной частоты (УПЧ) амплитудный детектор усилитель низкой частоты (УНЧ)



Реализации узкополосного ССП – это квазигармонические колебания: $x(t) = A(t) \cos[\omega_0 t + \theta(t)]$, A и θ случайные Функция автокорреляции $R(\tau) = R_0(\tau) \cos\omega_0 \tau$.

$$u(t) = s(t) + x(t) = V \cos \omega_t t + A(t) \cos[\omega_t t + \theta(t)] =$$

$$= [V + A(t) \cos \theta(t)] \cos \omega_t t - A(t) \sin \theta(t) \sin \omega_t t =$$

$$= U(t) \cos[\omega_t t + \varphi(t)].$$

$$U(t) = \sqrt{V^2 + A^2(t) + 2VA(t)\cos\theta(t)},$$

$$\varphi_{\Pi}(t) = \arctan\frac{A(t)\sin\theta(t)}{V + A(t)\cos\theta(t)}.$$

Совместная плотность вероятности огибающей и фазы

$$\omega_2(A, \varphi) = \frac{A}{2\pi\sigma^2} \exp\left(-\frac{A^2}{2\sigma^2}\right),$$

плотность вероятности огибающей

$$\omega_1(A)=\int\limits_0^{2\pi}\omega_2(A,\varphi)d\varphi=rac{A}{\sigma^2}\expiggl(-rac{A^2}{2\sigma^2}iggr),$$
 это закон распределения Релея.

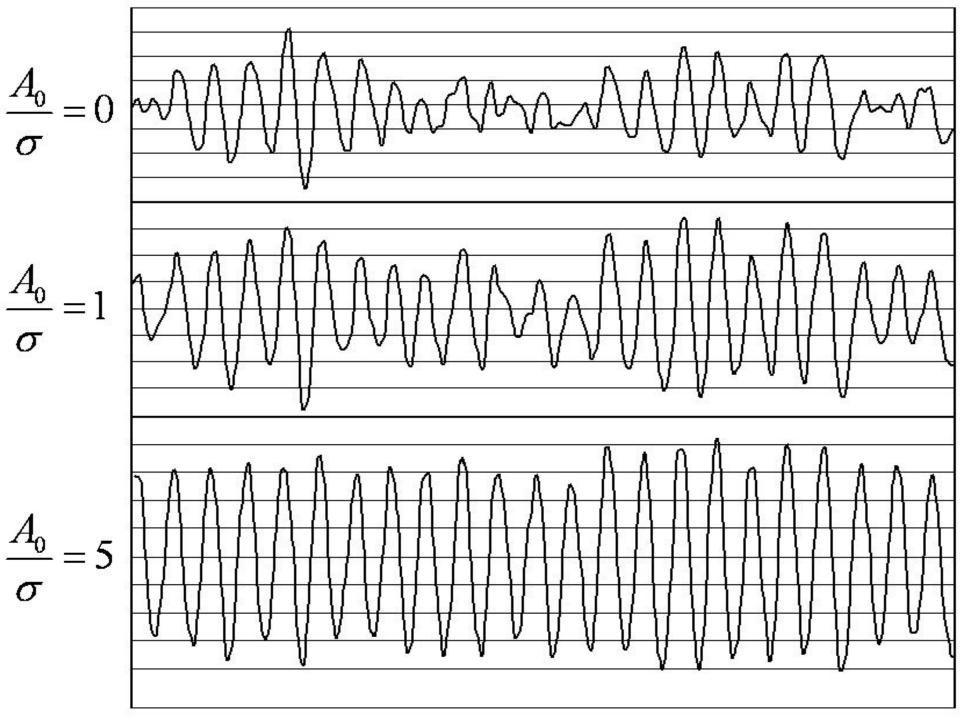
Плотность вероятности фазы

$$\omega_1(\varphi) = \int\limits_0^\infty \omega_2(A,\varphi) dA = \frac{1}{2\pi},$$
фаза распределена равномерно в интервале (0, 2 π).

Плотность распределения огибающей плотность распределения фазы равномерный закон распределения
$$\phi_1(\varphi)$$
 закон распределения $\phi_2(\varphi)$ закон распределения $\phi_3(\varphi)$ закон распределения $\phi_4(\varphi)$ закон распределения $\phi_4(\varphi$

$$\sigma_A^2 = \langle A^2 \rangle - (\langle A \rangle)^2, \ \sigma_A^2 = \left(2 - \frac{\pi}{2}\right)\sigma^2.$$

Плотность вероятности Релея-Райса



Функция Бесселя от мнимого аргумента

$$I_0(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{z\cos\varphi} d\varphi$$

Функция Бесселя от действительного аргумента

$$J_0(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{jz\cos\varphi} d\varphi$$

Отношение сигнала к шуму на выходе линейного детектора

$$h_{\text{BLIX}}^2 = \frac{(\langle A \rangle - \sigma \sqrt{\pi/2})^2}{2\sigma^2 + V^2 - \langle A \rangle^2}$$

Функция корреляции шума на входе

$$r(\tau) = \sigma^2 \rho(\tau) \cos \omega_0 t$$

Функция корреляции шума на выходе

$$R_{\scriptscriptstyle \mathrm{BLIX}}(au)$$

1. Слабый сигнал: $h^2 \ll 1$,

$$R_{\text{\tiny BLIX}}(\tau) = \frac{\pi}{8} \sigma^2 [\rho^2(\tau) + (\frac{4}{\pi})^2 2h^2 \rho(\tau)]$$

$$I_0\left(\frac{h^2}{2}\right) \approx 1, I_1\left(\frac{h^2}{2}\right) \approx \frac{h^2}{4}, e^{-\frac{h^2}{2}} \approx 1 - \frac{h^2}{2}, \langle A \rangle \approx \sqrt{\pi/2} \sigma \left(1 + \frac{h^2}{2}\right),$$

$$S_{\text{Ridix}} \approx \sqrt{\frac{\pi}{2}} \sigma \frac{h^2}{2}, \quad \sigma_{\text{Ridix}}^2 \approx (2 - \frac{\pi}{2}) \sigma^2, \quad h_{\text{Ridix}}^2 \approx \frac{\frac{\pi}{2} \frac{h^4}{4}}{2 - \frac{\pi}{2}} \approx \frac{h^4}{4} = h_{\text{Rix}}^2.$$

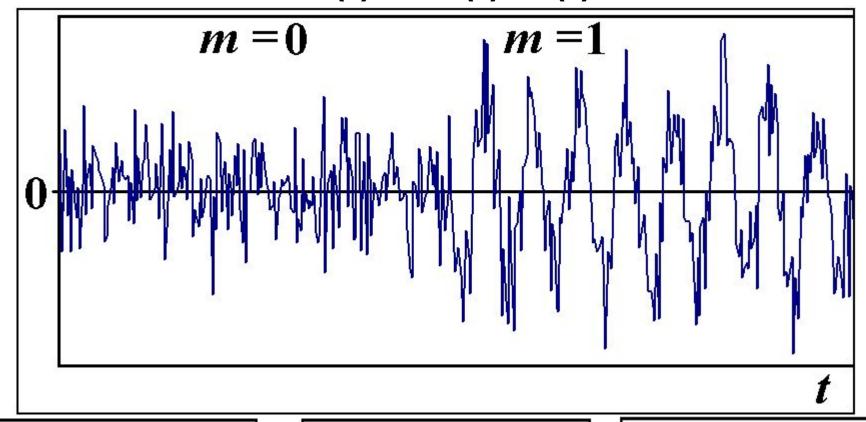
2. Сильный сигнал:
$$h^2 >> 1$$
, $R_{\text{вых}}(\tau) = \sigma^2 \rho(\tau) \left(1 + \frac{1}{4h^2} \rho(\tau) \right)$

$$I_{0}\left(\frac{h^{2}}{2}\right) \approx \frac{e^{\frac{h^{2}}{2}}}{\sqrt{\pi h}}\left(1 + \frac{1}{4h^{2}}\right), I_{1}\left(\frac{h^{2}}{2}\right) \approx \frac{e^{\frac{h^{2}}{2}}}{\sqrt{\pi h}}\left(1 - \frac{3}{4h^{2}}\right).$$

$$< A > \approx \sqrt{2}\sigma h \left(1 + \frac{1}{4h^2}\right) = V \left(1 + \frac{1}{4h^2}\right) \approx V, \ \sigma_{\text{\tiny BLIX}}^2 \approx \sigma^2,$$

$$h_{\text{BLIX}}^2 \approx \frac{V^2}{\sigma^2} = 2h^2 = 2h_{\text{BX}}^2$$
.

Амплитудный квадратичный детектор z(t)=ms(t)+x(t)



усилитель промежуточной частоты (УПЧ)

амплитудный детектор усилитель низкой частоты (УНЧ)

$$u(t) = s(t) + x(t) = E \cos \omega_0 t + A(t) \cos [\omega_0 t + \theta(t)],$$

$$U(t) = \sqrt{E^2 + A^2(t) + 2EA(t)\cos\theta(t)}, <\cos\theta>=0$$

$$< A^2 >= 2\sigma^2, < A^4 >= 8\sigma^4, h_1^2 = \frac{E^2}{2\sigma^2} = (c/n)_{ex}$$

$$U_{\text{RLIX}}(t) = K \frac{U^2(t)}{2} = K \left[\frac{E^2}{2} + \frac{A^2}{2} + EA(t) \cos \theta(t) \right].$$

$$=K\left[\frac{E^2}{2}+\sigma^2\right]$$
, приращение: $S_{\text{вых}}=K\frac{E^2}{2}$.

$$U_{\text{\tiny Hb,IX}}^{2}(t) = K^{2} \left\{ \frac{E^{4}}{4} + \frac{A^{4}(t)}{4} + \frac{A(t)^{2}E^{2}}{2} + \frac{A(t)^{2}}{2} E^{2} \left[1 + \cos 2\theta(t) \right] \right\}.$$

$$< U_{\text{\tiny Hb,IX}}^{2} > = K^{2} \left\{ \frac{E^{4}}{4} + \frac{\langle A^{4} \rangle}{4} + \langle A^{2} \rangle E^{2} \right\},$$

$$< U_{\text{\tiny BLIX}}^2 >= K^2 \left\{ \frac{E^4}{4} + 2\sigma^4 + 2E^2\sigma^2 \right\},$$

$$\sigma_{\text{\tiny BLIX}}^2 = < U_{\text{\tiny BLIX}}^2 > -\left(< U_{\text{\tiny BLIX}} >\right)^2 =$$

$$= K^2 \left[\frac{1}{4} E^4 + 2\sigma^4 + 2E^2\sigma^2 - \frac{1}{4} E^4 - \sigma^4 - E^2\sigma^2 \right],$$

 $\sigma_{\text{w.w}}^2 = K^2 \sigma^2 [\sigma^2 + E^2],$

$$(c/n)_{\text{BMX}} = \frac{S_{\text{BMX}}^{2}}{\sigma_{\text{BMX}}^{2}} = \frac{\frac{1}{4}E^{4}}{\sigma^{2}[\sigma^{2} + E^{2}]} = \frac{\left[\frac{E^{2}}{2\sigma^{2}}\right]^{2}}{1 + 2\left[\frac{E^{2}}{2\sigma^{2}}\right]} = \frac{h_{1}^{4}}{1 + 2h_{1}^{4}}$$

1. Слабый сигнал :
$$h_1^2 \ll 1$$
,

$$(c/n)_{\text{вых}} \approx h_1^4 = (c/n)_{\text{вх}}^2;$$

2. Сильный сигнал :
$$h^2 >> 1$$
, $(c/n)_{\text{вых}} = \frac{n_1^2}{2}$.