Антенны. Основы радиотехники.

Антенна — устройство для излучения или приёма электромагнитных волн. Антенна является преобразователем подводимого к ней по фидеру электромагнитного колебания (переменного электрического тока, канализированной в волноводе электромагнитной волны) в электромагнитное излучение и наоборот.

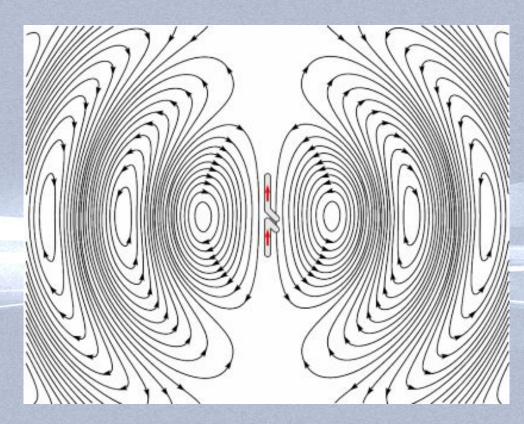


Рисунок 1 - Анимированная схема дипольных антенн, излучающих радиоволны

Принцип действия

Любая антенна обладает так называемым принципом "двойственности" - любая антенна может быть как передающей (то есть преобразовывать волны линии передачи в расходящиеся волны окружающего пространства), так и приемной (осуществлять обратное преобразование).

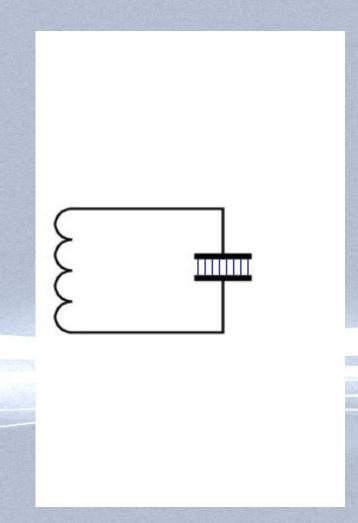


Рисунок 2 - Иллюстрация трансформации параллельного контура в дипольную антенну. Синие линии — силовые линии электрического поля, красные — магнитного

Характеристики антенн

Главная характеристика антенны — диаграмма направленности (ДН) — зависимость напряжённости поля, создаваемого антенной на достаточно большом расстоянии, от углов наблюдения в пространстве.

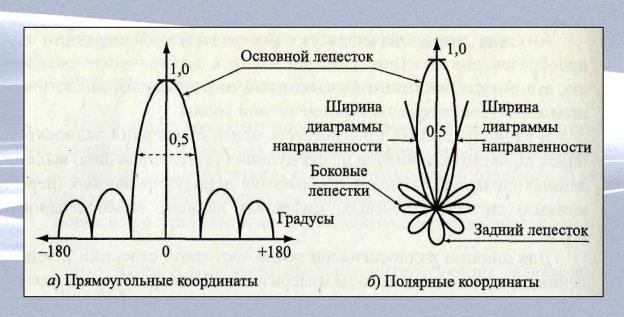


Рисунок 3 — Диаграмма направленности антенны в прямоугольных и полярных координатах

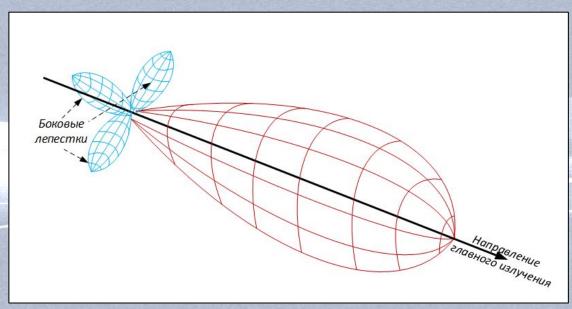


Рисунок 4 – Диаграмма направленности антенны

Коэффициент направленного

лействия
$$E_{cp}^{2}$$
 E_{cp}^{2}

E₀ квадрадрмодудулы щаярыменности электрического поля в <u>главном направлении</u> средне значение жвадрени вапрадрению сти напряженности поля

КНД характеризует направленные свойства антенны.

КНД абсолютно ненаправленной антенны, очевидно, равно единице. Физически пространственная диаграмма направленности такой антенны выглядит в виде идеальной сферы.

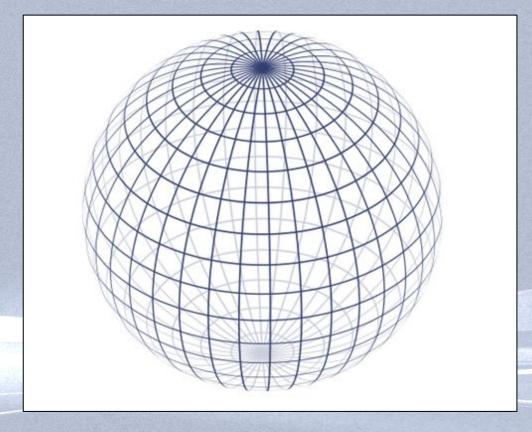


Рисунок 5 — КНД ненаправленной антенны

Коэффициент усиления

$$G = \eta * КНД$$

 η – коэффициент полезного действия (КПД) отношение мощности, создаваемой антенной, к подводимой мощности.

Понятие эталонной антенны очень важно в понимании коэффициента усиления, и в разных частотных диапазонах используют разные типы эталонных антенн. В диапазоне длинных/средних волн за эталон принят вертикальный несимметричный вибратор длиной четверть волны.

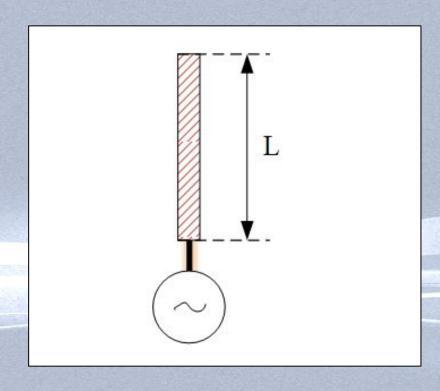


Рисунок 6 — Вертикальный несимметричный вибратор

Основные виды антенн. Симметричный

 $_{,}$ **Вибратор.** Симметричный вибратор, диполь — собой прямолинейный проводник длиной 2l радиуса a, питаемый в середине от

генератора токами высокой частоты. Апертура (раскрыв) — условная плоская поверхность через которую происхолит

поверхность через которую происходит излучение или приём ЭМ волн антенной.

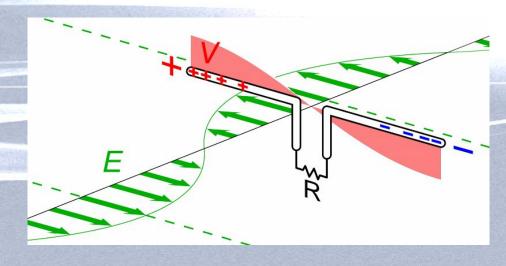


Рисунок 9. Схема приёма радиоволн полуволновым диполем

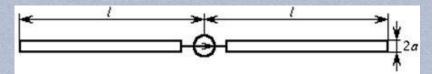


Рисунок 8. Симметричный вибратор. l - Длина плеча; 2a - диаметр проводника

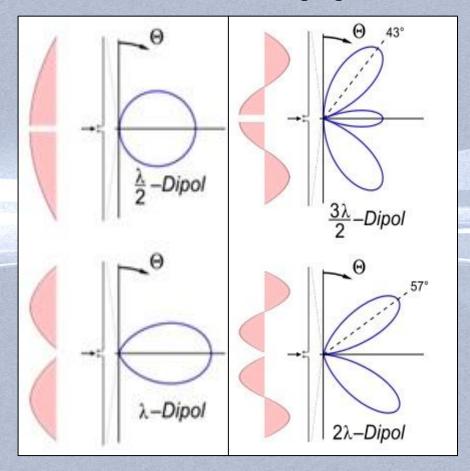


Рисунок 7 – Диаграмма направленности диполя

Рупорная антенна

Металлическая конструкция, состоящая из волновода переменного (расширяющегося) сечения с открытым излучающим концом. Как правило, рупорную антенну возбуждают волноводом, присоединенным к узкому концу рупора.

Рисунок 10 – Рупорная антенна

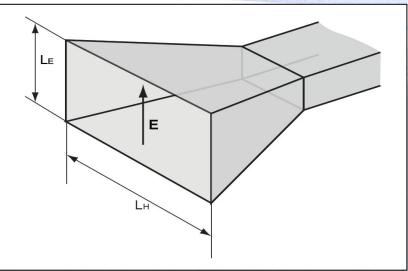


Рисунок 11. Параметры площади раскрыва рупора.

Зеркальная

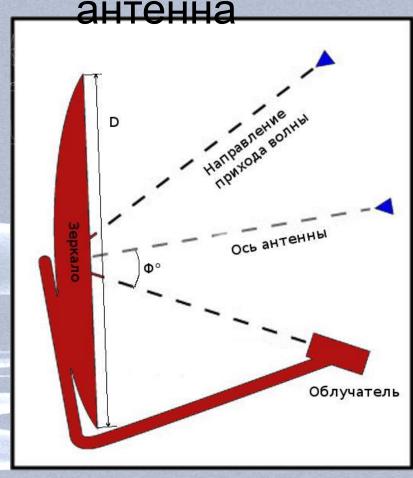


Рисунок 12 – Принцип действия зеркальной антенны

Рисунок 13 – Зеркальная антенна

Антенна, у которой электромагнитное поле в раскрыве образуется за счет отражения электромагнитной волны от металлической поверхности специального зеркала (рефлектора). В качестве источника волны обычно выступает небольшой излучатель, располагаемый в фокусе зеркала.

Антенная

Антере, Шеть а из совокупности отдельных антенн (излучающих элементов), расположенных в пространстве особым образом. Антенные решётки применяются для повышения коэффициента направленного действия антенны как системы излучающих элементов по сравнению с одиночным элементом и для получения возможности управления формой диаграммы направленности

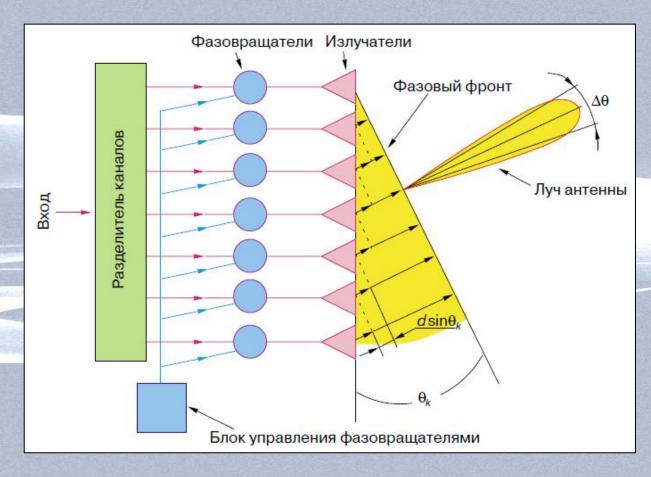


Рисунок 14 — Фазированная антенная решетка

Рисунок 15 – Принцип работы ФАР

Способы получения радиолокационного изображения

Режим реального луча

Осуществляется с помощью сканирования в горизонтальной плоскости. Разрешение РЛС по азимуту оказывается равным эффективной ширине диаграммы направленности антенны. Данный метод обладает низкой разрешающей способностью по азимуту.

Радиолокационное синтезирование апертуры

Измерение характеристик ЭМ поля по результатам измерений, сделанных в нескольких точках и в разное время. Антенны излучают зондирующие сигналы в импульсном режиме и осуществляют обзор поверхности за счет перемещения носителя РЛС.

Рисунок 16 – Изображение, полученное с помощью PCA