

5.1. Приведение произвольной плоской системы сил к простейшему виду

<u>Опр.</u> Произвольной плоской системой сил называется такая система, линии действия которых лежат в одной плоскости.

Примечание. Частным случаем произвольной плоской системы сил является плоская система сходящихся сил.

<u>Теорема о приведении произвольной плоской</u> <u>системы сил к простейшему виду.</u>

Любая плоская система сил, действующих на абсолютно твердое тело, при приведении к произвольно выбранному центру О заменяется одной силой R равной главному вектору, и приложенной в центре приведения О, и одной парой с моментом M_o , равным алгебраической сумме моментов всех сил относительно центра О, то есть:

$$\stackrel{\bowtie}{R} = \sum \stackrel{\bowtie}{F_k}, \quad M_O = \sum m_O(\stackrel{\bowtie}{F_k}).$$

<u>Примечание.</u> Главный момент M_o , для плоской системы сил заменен на алгебраическую сумму моментов всех сил относительно центра приведения, так как все векторные моменты сил будут параллельны.

5.2. Равновесие произвольной плоской системы сил

Необходимые и достаточные условия равновесия любой системы сил ранее были получены в виде формул (*):

$$\overset{\scriptscriptstyle{\bowtie}}{R}=0$$
, $\overset{\scriptscriptstyle{\bowtie}}{M}_{\scriptscriptstyle{0}}=0$.

Из этих выражений вытекают аналитические условия равновесия плоской системы сил. Их можно получить в трех различных формах.

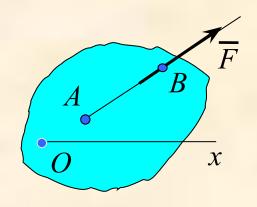
1. Основная форма условий равновесия

$$\sum \boldsymbol{F}_{kx} = \boldsymbol{\theta}, \quad \sum \boldsymbol{F}_{kv} = \boldsymbol{\theta}, \quad \sum m_o(\boldsymbol{F}_k) = 0. \tag{1}$$

Вывод Формулы (1) выражают следующие аналитические условия равновесия: для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы сумма проекций всех сил на две координатные оси и сумма моментов относительно любого центра, лежащего в плоскости действия сил, были равны нулю.

2. Вторая форма условий равновесия.

Для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы сумма моментов всех этих сил относительно каких-нибудь двух центров А и В и сумма их проекций на ось Ох, не перпендикулярную прямой АВ, были равны нулю:



$$\sum F_{kx} = \theta, \quad \sum m_A(\vec{F}_k) = \theta, \quad \sum m_B(\vec{F}_k) = \theta. \tag{2}$$

3. Третья форма условий равновесия (уравнения 3-х моментов)

Для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы моментов всех этих сил относительно любых трех центров А, В и С, не лежащих на одной прямой, были равны нулю:

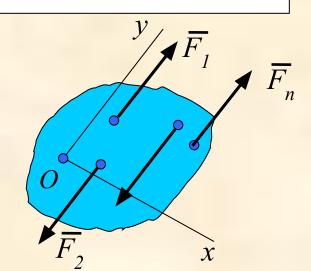
$$\sum m_{A}(\vec{F}_{k}) = 0, \qquad \sum m_{B}(\vec{F}_{k}) = 0, \qquad \sum m_{C}(\vec{F}_{k}) = 0. \tag{3}$$

Равновесие плоской системы параллельных сил

В случае, когда все действующие на тело силы параллельны друг другу, можно направить ось Ох перпендикулярно силам, а ось Оу параллельно им.

Тогда первое уравнение в выражении (1) обратиться в тождество вида $0 \equiv 0$. В результате для параллельных сил останется только два условия равновесия

$$\sum F_{ky} = 0, \qquad \sum m_A(F_k) = 0,$$



Другая форма условий равновесия для параллельных сил, получающаяся из равенств (2) или (3), имеет вид

$$\sum m_A(\vec{F}_k) = 0$$
, $\sum m_B(\vec{F}_k) = 0$.

5.3. Решение задач на равновесие произвольной плоской системы сил.

Реакции неподвижной шарнирной опоры и жесткой заделки.

В технике часто встречаются задачи с тремя типами опорных закреплений: подвижная шарнирная опора, неподвижная шарнирная опора и жесткая заделка. Реакции этих опор были рассмотрены ранее.

Рассмотрим опорные реакции неподвижной шарнирной опоры и жесткой заделки подробнее.

1. Неподвижная шарнирная опора.

Реакция такой опоры проходит через ось шарнира и может иметь любое направление в плоскости чертежа.

Hеизвестную по направлению реакцию R_A можно разложить на две составляющие X_A и Y_A по координатным осям.

 \overline{R}_A \overline{P} \overline{R}_B \overline{R}_B \overline{R}_B \overline{R}_B \overline{R}_B

<u>Вывод.</u> Реакцию \bar{R}_A неподвижной шарнирной опоры представляют в виде двух составляющих $\overset{\bowtie}{X}_A$ и $\overset{\bowtie}{Y}_A$, направленных по координатным осям.

2. Жесткая заделка.

Ранее был сделан вывод о том, что действие жесткой заделки заменяется наперед неизвестной реакцией R_A которая может иметь любое направление в плоскости действия сил, и парой сил, с наперед неизвестным моментом M_A .

Освободимся от связи.

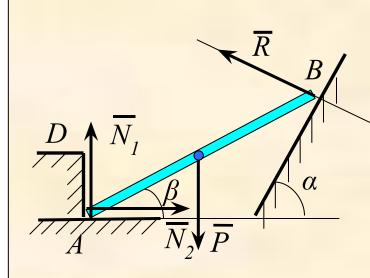
Неизвестную по направлению реакцию R_A можно разложить на две составляющие X_A и Y_A по координатным осям.

<u>Вывод.</u> Жесткую заделку заменяют двумя составляющими $X_A \ u \ Y_A$, направленными по координатным осям, и парой сил, с наперед неизвестным моментом M_A .

Решение задач.

Применяют алгоритм действий, рассмотренный ранее.

Пример 1. Однородный брус AB весом P опирается концом A на гладкую горизонтальную плоскость и выступ D, а концом B — на наклонную плоскость, образующую с горизонтальной плоскостью угол а. Сам брус наклонен под углом β. Определить силы давления бруса на обе плоскости и выступ D.

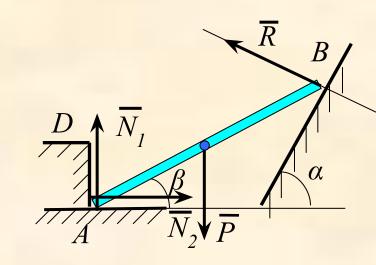


- 1. Выберем объект равновесия. Брус AB.
- 2. Приложим к объекту равновесия заданные силы. Сила \overline{P} .
- <u> 3. Освободимся от связей.</u>

3. Освободимся от связей.

В точке В свободное опирание.

Реакция связи \overline{R} направлена по общей нормали в точке соприкосновения B.



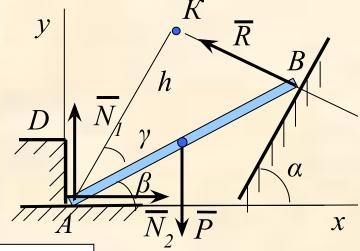
В других точках также свободное опирание.

Реакции связей \overline{N}_1 , \overline{N}_2 будут направлены перпендикулярно соответствующим плоскостям.

4. Выберем систему координат.

5. Выберем моментную точку.

Удобно взять точку A, так как в ней сходится большее число неизвестных сил (реакций связей).



6. Составим таблицу проекций и моментов.

\overline{F}_k	\overline{N}_{l}	\overline{N}_2	\overline{P}	\overline{R}	
F_{kx} 0		$N^{}_2$	0	$-R\sin(\alpha)$	
F_{ky}	$N_{_I}$	0	- P	$R \cos(\alpha)$	
$m_A(\overline{F}_k)$	0	0	$-Pa\cos(\beta)$	$R\ 2a\ cos\ (\gamma)$	

Oбозначим AB = 2 a.

Найдем плечо силы \bar{R} относительно точки A: h = AK.

Введем угол $\gamma = \alpha - \beta$. Тогда h = 2 a cos (γ).

7. Составим условия (уравнения) равновесия.

$$x: N_2 - R \sin(\alpha) = 0,$$

y:
$$N_1 - P + R \cos(\alpha) = 0$$
,

$$M_A$$
: - P a cos (β) + R 2a cos (γ) = 0.

Из последнего уравнения находим

$$R = (P \cos(\beta))/2\cos(\gamma)$$

или

$$R = (P \cos(\beta))/2\cos(\alpha-\beta).$$

Подставляя значение R во второе уравнение, получим

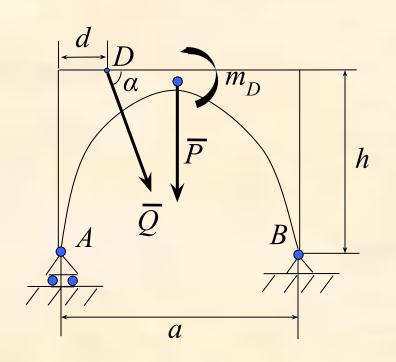
$$N_1 = P \left[1 - \frac{\cos(\alpha)\cos(\beta)}{2\cos(\alpha - \beta)}\right].$$

Решая первое уравнение, найдем

$$N_2 = P \frac{\sin(\alpha)\cos(\beta)}{2\cos(\alpha-\beta)}$$
.

Пример 2.

Симметричная арка загружена системой сил, приводящейся к силе Q = 40 кH, приложенной в точке D, и паре сил с моментом $m_D = 120$ кH м. Вес арки P = 80 кH. Дано: AB = a = 10 м, d = 2 м, h = 3 м, $\alpha = 60^{\circ}$.



Решение.

1. Выберем объект равновесия.

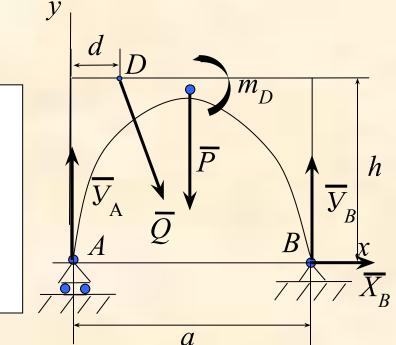
Арка.

2. Приложим к объекту равновесия заданные силы.

Силы \overline{P} , \overline{Q} и пара сил с моментом m_D .

3. Освободимся от связей.

B точке A подвижный шарнир, который заменяется одной реакцией \overline{Y}_{A} , перпендикулярной плоскости, по которой шарнир может перемещаться.



B точке B неподвижный шарнир, который заменяется двумя реакциями $\stackrel{\bowtie}{X_{\scriptscriptstyle R}} u \stackrel{\bowtie}{Y_{\scriptscriptstyle R}}.$

- 4. Выберем систему координат.
- 5. Выберем две моментные точки для того, что бы составить вторую форму условий равновесия.

Удобно взять точки А и В, так как в них сходится большее число неизвестных сил (реакций связей).

Удобно взять точки А и В, так как в них сходится большее число неизвестных сил (реакций связей).

6. Составим таблицу проекций и моментов

Предварительно разложим силу \overline{Q} на две составляющие $\overline{Q_1}$, $\overline{Q_2}$.

Модули составляющих:

 $Q_1 = Q \cos \alpha$, $Q_2 = Q \sin \alpha$

$-y\cos \alpha$, $y_2-y\sin \alpha$.											
\overline{F}_k	$\overline{Y}_{\!_{ m A}}$	$\overline{X}_{\!\scriptscriptstyle B}$	$\overline{Y}_{\!\scriptscriptstyle B}$	\overline{P}	$\overline{\mathcal{Q}}_1$	$\overline{\mathcal{Q}}_2$	m_{D}^{-}				
F_{kx}	0	$X_{ m B}$	0	0	$Q \cos \alpha$	0	0				
$m_A(\overline{F}_k)$	0	0	$V_B a$	- D /2	$-Q\cos(\alpha)h$	$-Q\sin(\alpha)d$	$m_D^{}$				
$m_B(\overline{F}_k)$	- <i>Y</i> _A a	0	0	Pa/2 Pa/2	-Q	$Q \sin(\alpha)(a-d)$	m_D				

При вычислении момента силы \overline{Q} была использована теорема Вариньона о моменте равнодействующей: $m_{\scriptscriptstyle A}(Q) = m_{\scriptscriptstyle A}(Q_{\scriptscriptstyle 1}) + m_{\scriptscriptstyle A}(Q_{\scriptscriptstyle 2})$.

7. Составим уравнения равновесия.

$$\sum F_{kx} = X_B + Q \cos \alpha = 0,$$

$$\sum m_A (\overline{F}_k) = Y_B a - Pa/2 - h Q \cos \alpha - d Q \sin \alpha + m_D = 0,$$

$$\sum m_B (\overline{F}_k) = -Y_A a + Pa/2 - h Q \cos \alpha + (a-d) Q \sin \alpha + m_D = 0.$$

8. Решим уравнения

Из первого уравнения получим

$$X_{\rm R}$$
 = - $Q \cos \alpha$ = - 20 kH.

Из второго уравнения найдем

$$Y_B = P/2 + Q (d \sin \alpha + h \cos \alpha)/a - m_D/a \approx 40.9 \text{ kH}.$$

Из третьего уравнения вычислим

$$Y_A = P/2 + Q [(a - d) \sin \alpha - h \cos \alpha] / a + m_D / a = 73,7 \text{ kH}.$$

Модуль полной реакции в опоре В найдется по формуле:

$$R_{B} = \sqrt{X_{B}^{2} + Y_{B}^{2}} \approx 45.5 \text{ } \kappa H$$

9. Сделаем проверку

Составим уравнение проекций на ось Ау

$$\sum F_{ky} = Y_A + Y_B - Q \sin \alpha - P = 114,6 - 114,6 \equiv 0.$$