

16-18 ТРАВНЯ, ЛЬВІВ, УКРАЇНА

МІЖНАРОДНА НАУКОВА КОНФЕРЕНЦІЯ СТУДЕНТІВ І МОЛОДИХ НАУКОВЦІВ З ТЕОРЕТИЧНОЇ ТА ЕКСПЕРИМЕНТАЛЬНОЇ ФІЗИКИ "ЕВРИКА-2017"

I.B. Гайворонський, В.В. Гіржон ЗНУ, кафедра фізики металів e-mail: igor.gayvoronsky@gmail.com http:www.znu.edu.ua

Квазікристалічні матеріали

Властивості

висока твердість і зносостійкість
висока корозійна стійкість
низька теплопровідність
низький коефіцієнт тертя

Квазікристалічні матеріали

Електронограми від квазікристалів: а) ікосаедричний; б) октагональний в) декагональний; г) додекагональний

Симетрія гептагонального покриття поверхні

Моделювання структури додекагональних квазікристалів

Квазікристалічні матеріали

Дифрактограма сплаву системи Ti-Ni-Zr

$$N = 2 \prod_{i=1}^{6} n_i^2 = h^2 + h'^2 + k^2 + k'^2 + l^2 + l'^2$$
$$M = h'^2 + k'^2 + l'^2 + 2(hh' + kk' + ll')$$
$$Q^2 = N + M\tau$$

5

Режими лазерної обробки

 $\lambda = 1,079$ мкм $\tau = 3.5$ мс $q \sim 0.5-1 \ \Gamma BT/m^2$ $\nu = 10 \ \Gamma u; 15 \ \Gamma u$

Дифрактограми від поверхні цирконію після ЛЛ (Ті/Ni = 2/1): а) в повітряній атмосфері з q = 1.1 ГВт/м², v = 10 Нz; в атмосфері аргону з q = 1.1 ГВт/м²: 6) v = 10 Гц; в) v = 15 Гц; Фазовий склад

 Поверхневі шари

 цирконію після ЛЛ

 q ~ 0.9 ГВт/м²:

 a) v = 10 Гц;

 б) v = 15 Гц;

Мікроструктура ЗЛЛ: a), б) v = 10 Гц; в), г) v = 15 Гц

Розподіл елементів у ЗЛЛ: a) v = 10 Гц; b) v = 15 Гц

Вимірювання значень мікротвердості: а) Розподіл мікротвердості в ЗЛЛ: 1 – 10 Гц; 2 – 15 Гц;

Відбитки індентора Віккерса при навантаженні: б) 0,05 кг; в) 0,1 кг

 Дифрактограми від поверхні цирконію після лазерного легування нікелем в атмосфері повітря:

 a) q = 1.1 ГВт/м², v = 10 Гц;

 b) q ~ 0.9 ГВт/м², v = 10 Гц;

 в) q ~ 0.9 ГВт/м², v = 15 Гц.

Фазовий склад

Зразок	α-Zr	β-Zr	ZrNi	ZrO ₂	ZrC
a) q = 1.1 ГВт/м², v = 10 Гц	+	+	+	+	+
б) q ~ 0.9 ГВт/м², v = 10 Гц	+	+	+	+	+
в) q ~ 0.9 ГВт/м², v = 15 Гц	+	+	+	+	+

Дифрактограми від поверхні цирконію після ЛЛ (Ti/Ni=1/1) в атмосфері аргону з q $\sim 0.9 \ \Gamma B T/M^2$: a) v = 10 Гц; 6) v = 15 Гц.

Фазовии склад				
Зразок	α-Zr	ZrC	ZrNi	
a) q = 1.1 ГВт/м ² v = 10 Гц	+	÷	+	
б) q = 1.1 ГВт/м ² v = 15 Гц	+	+	-	

Дифрактограми від поверхні зразків титану після ЛЛ з q = 550 МВт/м² при товщині обмазки 50 мкм (*a*), 75 мкм (б) та 100 мкм (в)

Фазовий склад зі значеннями параметрів граток, нм

20000	Фаза				
эразок	α-Ti	β-Τί	TiZrNi	TiC	
а) 50 мкм	a = 0,296	2 = 0 320	a = 0,536	2 = 0.426	
	c = 0,468	a - 0,329	c = 0,875	a - 0,420	
б) 75 мкм	a = 0,295	a = 0.330	a = 0,536	a = 0.426	
	c = 0,468	u 0,000	c = 0,874	a – 0, 1 20	
	a = 0,299	a = 0.220	a = 0,537	o = 0 427	
B) TUUMKM	c = 0,471	a - 0,329	c = 0,875	a - 0,427	

Мікростуктура ЗЛЛ зразка після ЛЛ, товщина обмазки – 100 мкм, q = 550 МВт/м²

Дифрактограми від поверхні зразків з товщиною обмазки 100 мкм при q = 550 МВт/м² :

- а) після повторної ЛО зразка (Zr/Ni = 2/1)
- б) після ЛЛ при співвідношенні Zr/Ni = 1.5/1;
- в) після ЛЛ при співвідношенні Zr/Ni = 3/1

Фазовий склад зі значеннями параметрів граток, нм

Зразок	Фаза				
	α-Ti	β-Τί	TiZrNi	TiC	1/1
Повторна	a= 0,298	0 - 0 220	a = 0,537	0 = 0.426	o = 1 420
ЛО	c= 0,471	a – 0,330	c = 0,875	a – 0,420	a – 1,429
Zr/Ni =	a = 0,299	0 = 0 220	a = 0,537	0 = 0.426	0 - 1 420
1.5/1	c = 0,471	a – 0,329	c = 0,875	a – 0,420	a - 1,430
7r/Ni - 2/1	a = 0,295	a = 0 220	a = 0,536	2 = 0 427	_
21/11 - 3/1	c = 0,468	a – 0,329	c = 0,875	a - 0,427	_

Мікростуктура ЗЛЛ зразка після ЛЛ, Zr/Ni = 3/1 товщина обмазки – 100 мкм, q = 550 МВт/м²

RACHORKA

- Високі швидкості охолодження при лазерному легуванні призводять до диспергізації вихідної структури матричного матеріалу, що обумовлює багаторазове зростання середніх значень мікротвердості в зоні лазерної дії.
- Рентгенографічно формування *і*-фази в зоні лазерного легування виявлено не було, що пов'язано з наступними причинами: досить значною різницею в температурах плавлення тугоплавких Ті, Ni, Zr і температурою формування *і*-фази і утворенням твердих розчинів на основі Zr та Ti, що могло призводити до порушення стехыометричного складу в ЗЛЛ, характерного для *і*-фази.

