
IMPLEMENTING IOE

Assist. Prof. Rassim Suliyev - SDU 2017Week 8

Physical Output

◻ Make things move by controlling motors with Arduino

◻ Servo-motors
Rotary actuator that allows for precise control of angular position

◻ DC-motors
Converts direct current electrical power into mechanical power

◻ Stepper-motors
Divides a full rotation into a number of equal steps

Brushed DC Motors

◻ Simple devices with two leads connected to brushes (contacts)
Control the magnetic field of the coils

Drives a metallic core (armature)

◻ Direction of rotation can be reversed by reversing the polarity

◻ Require a transistor to provide adequate current

◻ Primary characteristic in selecting a motor is torque
How much work the motor can do

Brushless Motors

◻ More powerful and efficient for a given size

◻ Three phases of driving coils

◻ Require more complicated electronic control
Electronics speed controllers

DC Motor Parameters

◻ Direct-drive vs. gearhead – built-in gears or not

◻ Voltage – what voltage it best operates at

◻ Current (efficiency) – how much current it needs to
spin

◻ Speed – how fast it spins

◻ Torque – how strong it spins

◻ Size, shaft diameter, shaft length

DC Motor Characteristics

◻ When the first start up, they draw a lot more
current, up to 10x more

◻ If you “stall” them (make it so they can’t turn), they
also draw a lot of current

◻ They can operate in either direction, by switching
voltage polarity

◻ Usually spin very fast: >1000 RPM

◻ To get slower spinning, need gearing

Driving DC Motor

◻ To drive them, apply a voltage

◻ The higher the voltage, the faster the spinning

◻ Polarity determines which way it rotates

◻ Can be used as voltage generators

Switching Motors with Transistors

◻ Transistors switch big signals with little signals

◻ Since motors can act like generators,

◻ Need to prevent them from generating “kickback”
into the circuit

◻ Can control speed of motor with analogWrite()

Driving a Brushed Motor

const int motorPin = 3;
const int switchPin = 2;
void setup() {
 pinMode(switchPin, INPUT);
 pinMode(motorPin, OUTPUT);
}
void loop() {
 digitalWrite(motorPin, digitalRead(switchPin));
}

Controlling Speed of DC-Motor

const int motorPin = 3;
const int potPin = A0;
void setup() {
}
void loop() {
 int spd = analogRead(potPin);
 spd = map(spd, 0, 1023, 0, 255);
 analogWrite(motorPin, spd);
}

Servo-Motors

◻ Allow accurately control physical movement

◻ Move to a position instead of continuously rotating

◻ Rotate over a range of 0 to 180 degrees

◻ Motor driver is built into the servo
Small motor connected through gears
Output shaft drives a servo arm
Connected to a potentiometer to provide position feedback

◻ Continuous rotation servos
Positional feedback disconnected
Rotate continuously clockwise and counter clockwise with
some control over the speed

Servo-Motors

Servo-Motors

◻ Respond to changes
in the duration of a
pulse

Short pulse of 1 ms
will cause to rotate to
one extreme
Pulse of 2 ms will
rotate the servo to
the other extreme

Servos require pulses different
from the PWM output from

analogWrite

Servo-Motors

◻ Come in all sizes
from super-tiny
to drive-your-car

◻ All have same 3-wire interface

◻ Servos are spec’d by:
weight: 9g
speed: .12s/60deg @ 6V
torque: 22oz/1.5kg @ 6V
voltage: 4.6~6V
size: 21x11x28 mm

Servo Control

◻ PWM freq is 50 Hz (i.e. every 20 millisecs)

◻ Pulse width ranges from 1 to 2 millisecs

In practice, pulse range can range
from 500 to 2500 microsecs

Servo and Arduino

const int servoPin = 7;
const int potPin = A0;
const int pulsePeriod = 20000; //us
void setup() {
 pinMode(servoPin, OUTPUT);
}
void loop() {
 int hiTime = map(analogRead(potPin), 0, 1023, 600, 2500);
 int loTime = pulsePeriod - hiTime;
 digitalWrite(servoPin, HIGH); delayMicroseconds(hiTime);
 digitalWrite(servoPin, LOW); delayMicroseconds(loTime);
}

Use the Servo library

◻ servo.attach(pin[, min][, max]) – attach the servo
pin- the pin number that the servo is attached to
min (optional) - the pulse width, in microseconds,
corresponding to the minimum (0-degree) angle on the
servo (defaults to 544)
max (optional) - the pulse width, in microseconds,
corresponding to the maximum (180-degree) angle on
the servo (defaults to 2,400)

◻ servo.write(angle) – turn the servo arm
angle – the degree value to write to the servo (from 0
to 180)

Servo sweeper

#include <Servo.h>
Servo myservo; // create servo object to control a servo
int angle = 0; // variable to store the servo position
void setup(){
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
}
void loop(){
 for(angle = 0; angle < 180; angle += 1){ // goes from 0 degrees to 180
 myservo.write(angle); //tell servo to go to position in variable 'angle'
 delay(20); // waits 20ms between servo commands
 }
 for(angle = 180; angle >= 1; angle -= 1){ // goes from 180 degrees to 0
 myservo.write(angle);
 delay(20);
 }
}

Controlling angle with pot

#include <Servo.h>
Servo myservo; // create servo object to control a servo
int potpin = 0; // analog pin used to connect the potentiometer
int val; // variable to read the value from the analog pin
void setup(){
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
}
void loop(){
 val = analogRead(potpin); // reads the value of the potentiometer
 val = map(val, 0, 1023, 0, 180); // scale it to use it with the servo
 myservo.write(val); // sets position
 delay(15);
}

Stepper Motors

◻ Rotate a specific number of degrees in response to
control pulses

◻ Number of degrees for a step is motor-dependent
Ranging from one or two degrees per step to 30
degrees or more

◻ Two types of steppers
Bipolar - typically with four leads attached to two coils
Unipolar - five or six leads attached to two coils

◻ Additional wires in a unipolar stepper are internally
connected to the center of the coils

Stepper Motors

◻ Unipolar drivers always energize the phases in the same way
Single "common" lead, will always be negative.

The other lead will always be positive

Disadvantage - less available torque, because only half of the coils
can be energized at a time

◻ Bipolar drivers work by alternating the polarity to phases
All the coils can be put to work

Stepper Motors

All of the common
coil wires are tied
together internally
and brought out as a
5th wire. This motor
can only be driven
as a unipolar motor.

This motor only joins
the common wires of 2
paired phases. These
two wires can be joined
to create a 5-wire
unipolar motor. Or you
just can ignore them
and treat it like a bipolar
motor!

It can be driven in several ways:
•4-phase unipolar - All the common wires are connected
together - just like a 5-wire motor.

•2-phase series bipolar - The phases are connected in series -
just like a 6-wire motor.

•2-phase parallel bipolar - The phases are connected in parallel.
This results in half the resistance and inductance - but requires
twice the current to drive. The advantage of this wiring is higher
torque and top speed.

Driving a Unipolar Stepper Motor

const int stepperPins[4] = {2, 3, 4, 5};
int delayTime = 5;
void setup() {
 for(int i=0; i<4; i++)
 pinMode(stepperPins[i], OUTPUT);
}

void loop() {
 digitalWrite(stepperPins[0], HIGH);
 digitalWrite(stepperPins[1], LOW);
 digitalWrite(stepperPins[2], LOW);
 digitalWrite(stepperPins[3], LOW);
 delay(delayTime);
 digitalWrite(stepperPins[0], LOW);
 digitalWrite(stepperPins[1], HIGH);
 digitalWrite(stepperPins[2], LOW);
 digitalWrite(stepperPins[3], LOW);
 delay(delayTime);
 digitalWrite(stepperPins[0], LOW);
 digitalWrite(stepperPins[1], LOW);
 digitalWrite(stepperPins[2], HIGH);
 digitalWrite(stepperPins[3], LOW);
 delay(delayTime);
 digitalWrite(stepperPins[0], LOW);
 digitalWrite(stepperPins[1], LOW);
 digitalWrite(stepperPins[2], LOW);
 digitalWrite(stepperPins[3], HIGH);
 delay(delayTime);
}

Driving a Bipolar Stepper Motor

const int stepperPins[4] = {2, 3, 4, 5};
int delayTime = 5;
void setup() {
 for(int i=0; i<4; i++)
 pinMode(stepperPins[i], OUTPUT);
}
void loop() {
 digitalWrite(stepperPins[0], LOW);
 digitalWrite(stepperPins[1], HIGH);
 digitalWrite(stepperPins[2], HIGH);
 digitalWrite(stepperPins[3], LOW);
 delay(delayTime);
 digitalWrite(stepperPins[0], LOW);
 digitalWrite(stepperPins[1], HIGH);
 digitalWrite(stepperPins[2], LOW);
 digitalWrite(stepperPins[3], HIGH);
 delay(delayTime);
 digitalWrite(stepperPins[0], HIGH);
 digitalWrite(stepperPins[1], LOW);
 digitalWrite(stepperPins[2], LOW);
 digitalWrite(stepperPins[3], HIGH);
 delay(delayTime);
 digitalWrite(stepperPins[0], HIGH);
 digitalWrite(stepperPins[1], LOW);
 digitalWrite(stepperPins[2], HIGH);
 digitalWrite(stepperPins[3], LOW);
 delay(delayTime);
}

Arduino Stepper Library

◻ Allows to control unipolar or bipolar stepper motors

◻ stepper(steps, pin1, pin2, pin3, pin4) – attach and initialize
stepper

steps: number of steps in one revolution of motor

pin1, pin2, pin3, pin4: 4 pins attached to the motor

◻ setSpeed(rpms) - Sets the motor speed in rotations per minute
(RPMs)

◻ step(steps) - Turns the motor a specific number of steps,
positive to turn one direction, negative to turn the other

This function is blocking

wait until the motor has finished moving before passing control to the
next line in sketch

Arduino Stepper Library

#include <Stepper.h>
const int stepsPerRevolution = 200; // change this to fit the number of steps
Stepper myStepper(stepsPerRevolution, 2, 3, 4, 5);
void setup() {
 myStepper.setSpeed(60);
 Serial.begin(9600);
}
void loop() {
 Serial.println("clockwise");
 myStepper.step(stepsPerRevolution);
 delay(5);
 Serial.println("counterclockwise");
 myStepper.step(-stepsPerRevolution);
 delay(5);
}

