Home energy audit assignment

HURRAY! – with some thermal transfer calculation

DUE: 16 October 2016

Instructions on Building energy Auditing will be delivered on Oct 14

You will present your audit findings on Oct 16th

Carry out your home energy audit

- Follow the checklist (on Moodle)
 - <u>https://www.ase.org/resources/home-energy-audit</u>
 - Skip sections irrelevant to your households
- Use the energy audit data collection table (on Moodle)
- Calculate the U-values of your building envelope
 - Use the science part of the class (slides)
 - Use the catalog of insulation materials (on Moodle)
 - Refer to advisory handbook for insulation (if you don't know what your wall is)
- Recommend energy efficiency improvements
- Recalculate your envelope U-values after energy efficiency added
 - Aim for no less than R= 2.2 m²·°C/W

Lambda (λ) Thermal Conductivity

- •The value of lambda λ (W/m. °C) = is the insulation value of the material.
- •E.g. Thermal conductivity of polystyrene W/m^oC = 0.028 0.035
- •The lower the lambda, the higher the insulation worth of the material (mind the thickness).

- Lambda (Thermal Conductivity) --- Thermal conductivity (also known as Lambda) is the rate at which heat passes through a material, measured in watts per square metre of surface area for a temperature gradient of one kelvin for every metre thickness. This is expressed as W/mK. Thermal conductivity is not affected by the thickness of the product. The lower the conductivity, the more thermally efficient a material is. Example:
- PIR Board: Lambda = 0.022 W/mK
- Glass Fibre Roll: Lambda = 0.044 W/mK

R-value. Thermal resistance

•Lambda values (λ), combined with information on the thickness of material, represent the thermal resistance of individual materials used in the building envelope, or their R-value.

 $\mathbf{R} = \frac{\text{Thickness}}{\lambda} \qquad \text{measured in } \mathbf{m}^2 \cdot \mathbf{C/W}$

•The higher the R-value, the better it resists the heat transfer.

•The cumulative thermal resistance of a mixed structure is comprised of individual R-values of the layers in the structure.

R-Value (Thermal Resistance) --- Thermal resistance is the ability of a material to prevent the passage of heat. It's the thickness of the material (in metres) divided by its conductivity. This is expressed as m2K/W. If the material consists of several elements, the overall resistance is the total of the resistances of each element. The higher the R-value, the more efficient the insulation.

Example:

PIR Board: 0.022 W/mK and 100mm thick; R-value = 0.1 metres ÷ 0.022 = 4.54 m2K/W Glass Fibre Roll: 0.044 W/mk and 100mm thick; R-value = 0.1 metres ÷ 0.044 = 2.27 m2K/W

Calculating U-Values

- Start by calculating the thermal resistances of each element (R-values).
- The R-value is the thickness of the product in metres ÷ Lambda (thermal conductivity).
- Add the R-values of all materials used in the application (including any air gaps) and calculate the reciprocal. The reciprocal = 1 ÷ total of all R-values

• Example:

PIR Board 0.022 W/mK100mm thick + Glass Fibre Roll 0.044 W/mK100mm thick

```
Total combined R-value = 4.54 + 2.27 = 6.81 m2K/W
U-value = 1 ÷ 6.81 = 0.147 W/m2K
```

Table of Insulation & Other Building Material Propertieshttp://inspectapedia.com/insulation/Insulation_Values_Table.php

Efficient window features

- Triple Glazing
- Thermal break
- One or more
- Inert gas filling
- Argon/
- Krypton
- Low-E
 - Reflected undesired heat loss
- Multiple Chambers
- Reduced heat transfer
- Tight seals
- Compression

Glazing options	<mark>u-Value</mark> in W/m ² К
single glazing	4.6
low E single-glazing*	3.2
double-glazing	2.6
low E double-glazing*	1.9
Argon double-glazing**	1.6

Features of Selected Window Types

Types of windows	R-value	Types of windows	R-value
4 -chamber PVC profile, double glazed	0.48	 ⁴ - chamber aluminium profile, thermal bridge, double glazed 20mm thick 4М1-10-И4 	0.47
5chamber PVC profile, double glazed 4M1-Ar16-4M1	0.5	5- chamber aluminium profile, thermal bridge, double glazed 20mm thick, 4M1-16-M4	0.48
4chamber PVC profile, triple glazed 4M1-16-4M1-16-4M1	0.54	6 - chamber aluminium profile, thermal bridge, triple glazed	0.52
6chamber PVC profile, triple glazed 4M1-10-4M1-10-4M1	0.56	20mm thick, 4м1-10-4м1-10-и4 4- chamber aluminium profile,	0.54
5 -chamber PVC profile, triple glazed	0.57	thermal bridge, triple glazed 20mm thick, 4M1-Ar12-4M1-Ar12-4M1	0.54
6 -chamber PVC profile, double glazed	0.61	5- chamber aluminium profile, thermal bridge, triple glazed 20mm thick, 4м1-16-4м1-16-и4	0.57
Wooden frame	0.55	6- chamber aluminium profile, thermal bridge, triple glazed	0.61
Metal-reinforced wooden frame	0.55	20mm thick, 4м1-Ar8-4M1-Ar8-И4	

Summary of characteristics of typical insulation materials

N≌	M aterial	Density	Longevit y (years)	W ater permeability	Flamm ability	Chemical and environmental resistance	W orkability	Additional materials	Cost of material*
1	Perlite board	250±1 0%	≥100	Absorbs	Resists up to 1300°C, Non- combustible	Resists to alkali and acids, ecologically clean	Easy to work	Glue, anchors	\$150-\$200 per cubic meter
2	Perlite loose-fill	80- 120	≥100	Absorbs	Resists up to 1300°C	Resists to alkali and acids, ecologically clean	Easy to work	bags, wooden or metal risers	\$100-\$200 per metric ton
З	M ineral w ool	15- 200	upto 60	Absorbs	Resists up to 3000°C	Resists to alkali and acids, ecologically clean	Easy to cut and work	Glue, anchors, w ind- and w ater protective m em brane	\$1-\$5 per piece or \$50-\$100 per cubic meter
4	Extruded polystyrene (XPS)	28-45	upto 15	Absorbs	Resists up to +80 °C	Vulnerable to alkali and acids, contains gas. W hen burned em its harmful hydrocyanic gases.	Easy to cut and work	Glue, anchors	\$50-\$150 per cubic meter
5	Polyurethane foam boards	40-80	more than 50	Resists	Resists up to 250°C	Resists to alkali and acids, contains gas	Easy to cut and work	Glue, anchors	Up to \$30 per standard board
6	Sprayed polyurethane foam	40-80	more than 50	Resists	Resists up to 250°C	Resists to alkali and acids, contains gas	Easy to spray, no jo ints	special spraying machine	1mm thickness up to \$5 per square meter
7	Foam glass	120- 160	≥100	Resists	Resists up to 730°C	Resists to alkali and acids	Easy to cut and work	Glue, anchors	\$300-\$350 per cubic meter

Insulation materials of perlyte

Nº	Product	Density, kg/m ³	Heat transfer coefficient, W/m°C
1.	Swelled perlite sand	50-150	0.038-0.058
2.	Foam glass grains	150-200	0.058-0.076
3.	Perlite silicate slabs and segments	200-270	0.06-0.07
4.	Flexible perlite heat insulation mat	80-120	0.04-0.045
5.	Perlite cement slabs	400-500	0.06-0.14
6.	Perlite gypsum slabs	270-330	0.165
7.	Foam glass grain slabs	225-325	0.059-0.065

Insulation materials of mineral wool/fiber

Nº	Product	Density, kg/m ³	Heat transfer coefficient, W/m°C
1.	Mineral wool	30-160	0.039-0.045
2.	Extra-fine basalt microfiber mats	15-30	0.036-0.037
3.	Basalt fine microfiber mats	15-40	0.037-0.044
4.	Glass wool	11	0.045
5.	Basalt microfiber heat insulation	150-200	0.045-0.049
	cords/harnesses		

Insulation materials of foam polyurethane, foam plastic

and foam polystyrol

Nº	Product	Density, kg/m ³	Heat transfer coefficient, W/m°C
1.	Foam plastic	10-90	0.03-0.05
2.	Extruded foam polystyrol	30-50	0.029-0.040
3.	Foam polyurethane	20-200	0.020-0.029

Thermal conductivity of other materials

Can be found at http://inspectapedia.com/insulation/Insulation_Values_Table.php