Гидрогазодинамика

Лекции

1. Основы гидростатики

- 1.1. Основные свойства жидкостей
- 1.2. Гидростатическое давление. Закон Паскаля
- 1.3. Сила гидростатического давления на плоские стенки. Закон Архимеда

1. Основы гидростатики

Сплошная среда – модель, в которой:

- учитывается деформация тела под действием приложенных сил;
- полагается, что тело обладает свойством сплошности (масса тела распределена по пространству непрерывно).

Гипотеза сплошности введена в XVIII в. Даламбером (в 1744г.)

Среда рассматривается как сплошная (непрерывная, неразрывная).

В рамках гипотезы сплошности состояние движущейся среды в каждой точке потока характеризуется макропараметрами:

- \bullet вектор скорости u(x, y, z, t),
- \bullet давление p(x, y, z, t),
- \bullet температура T(x, y, z, t),
- \bullet плотность $\rho(x, y, z, t)$,
- динамический коэффициент вязкости μ(x, y, z, t),
- кинематический коэффициент вязкости $v = \mu/\rho = v(x, y, z, t)$

Критерий сплошности

К сплошным средам могут быть отнесены:

- Твердые тела,
- Жидкости (вода, масла, растворы, расплавы),
- Газы (газ, пар, газовые смеси),
- Плазма.

Для газов и плазмы гипотеза сплошности применима не всегда. Она неприменима для разреженной среды (например, в верхних слоях атмосферы).

Критерием сплошности может служить значение числа Кнудсена $K_{r} = l/L$

где l — длина свободного пробега молекул; L — характерный размер тела.

Для сплошной среды должно выполняться условие

 $K_n << 1$

Классификация моделей жидкости Модели сжимаемой и несжимаемой жидкости

Сжимаемость — способность тела изменять свой объем под воздействием давления. Коэффициент сжимаемости определяется как $\chi_s = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_{-} = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_{-}$

где ρ — плотность вещества, кг/м³; υ — удельный объем, м³; ρ — давление, Па; s — условия, при которых определяется коэффициент сжимаемости.

Капельные жидкости отличаются чрезвычайно малой сжимаемостью. $\chi_{\bullet} \approx 5 \cdot 10^{-5} \, \rm fap^{-1}$

Течение капельных жидкостей рассматривают в рамках модели *несэкимаемой* жидкости.

Для газов сжимаемость во много раз выше.

Число Маха

Во многих случаях газы можно рассматривать в рамках модели несжимаемой жидкости.

u — скорость газового потока, a — скорость звука. Отношение M = u/a называется *числом Маха*.

- Модель несжимаемой жидкости применима к капельным жидкостям и газам при M < 0,3;
- Модель сжимаемой жидкости к газам при M>0,3.

Модели идеальной и вязкой жидкости

Идеальная жидкость — жидкость с нулевой вязкостью, совершенно лишенная внутреннего трения и не оказывающая никакого сопротивления сдвигу. Свойства идеальной жидкости можно приписать и несжимаемой, и сжимаемой жидкости.

Вязкая жидкость — близкая к реальности модель несжимаемой и сжимаемой жидкости.

1.1. Основные свойства жидкости

Плотность (средняя плотность, плотность физически бесконечно малого объема) — скалярная физическая величина, определяемая как отношение массы жидкости в единице объема.

Единица
$$I_{\rho} = \frac{M}{V}$$
ния — 1 кг/м³.

Удельный вес — частное от деления веса частицы на ее объем:

$$\gamma = \frac{F}{V} = \frac{Mg}{V} = \rho g$$

Единица измерения — 1H/м³.

Значения плотности воды в зависимости от температуры

t, °C	0	4	10	20	30
ρ, $κΓ/M3$	999,87	1000	999,73	998,23	995,67

Сжимаемость жидкости – способность жидкости изменять свой объем под действием внешних сил. Сжимаемость характеризуется **коэффициентом сжатия** β , Πa^{-1} , выражающим относительное изменение объема при изменении давления:

Так как
$$V = \frac{M}{\rho} M = \text{const}$$
, то
$$\beta = \frac{\rho}{M} \left(\frac{\partial (M/\rho)}{\partial p} \right)_{T=const} = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_{T=const}$$

Величина, обратная коэффициенту сжатия, называется модулем объемной упругости К, Па: $K = \frac{1}{\beta}$

Значение модуля упругости воды K при давлении 10⁵ Па в зависимости от температуры

t, °C	0	5	10	15	20
K·10 ⁻⁹	1,86	1,91	1,93	1,96	1,98

Температурное расширение жидкости. Коэффициент температурного расширения α выражает относительное увеличение объема жидкости при повышении температуры: $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)$

Коэффициент температурного расширения зависит от рода жидкости, ее температуры и давления.

Вязкость жидкости.

Между частицами или слоями жидкости, движущимися с различными скоростями, всегда возникает сила внутреннего трения, противодействующего движению. Свойство жидкости оказывать сопротивление скольжению слоев жидкости относительно друг друга называется вязкостью.

Сила внутреннего трения, отнесенная К единице поверхности соприкасающихся слоев жидкости, называется касательным напряжением т.

$$\frac{dv}{t}$$
 — выражает произкультуры от скоро

 $\frac{dv}{dn} = \mu \frac{dvq}{dn} \frac{H b b b b b b}{dn}$ где $\frac{dv}{dn}$ выражает производную от скорости по направлению нормали к поверьности соприкасающихся слоев жидкости. Жидкости, удовлетворяющие данному закону называются ньютоновскими, а не удовлетворяющие неньютоновскими.

С геометрической точки зрения . Касательное напряжение имеет наибольшее значение у стенок канала.

$$\frac{dv}{dn} = tg\alpha$$

Динамический коэффициент вязкости µ — физическая характеристика жидкости, зависит от рода жидкости и ее температуры. $1 H \cdot c/m^2 = 1 \kappa c/m \cdot c$

Коэффициент кинематической вязкости v — отношение вязкости μ к плотности ρ .

$$v = \frac{\mu}{\rho}$$

Значения кинематической вязкости v воды в зависимости от температуры

t, °C	О	5	10	12	15	20	30	40	50
v·10 ⁶ , m ² /c	1,8	1,52	1,31	1,24	1,14	1,01	0,81	0,66	0,55

В табл. 7 приведены значения кинематической вязкости v для некоторых веществ.

Таблица 7

Кинематическая вязкость у различных веществ при конкретной температуре t

Вещество	t,°C	v, Cr
Воздух	0	0,133
Нефтепродукты*:		
пефть легкая	18	0,25
нефть тяжелая	18	1,40
керосин	15	0,027
мазут	18	20,0
Масло АМГ-10	50	0,10
Сталь жидкая	1550	0,0037
Ртуть	15	0,0011

Растворение газов

Из закона растворимости Дальтона при давлениях до 30 МПа и постоянной температуре:

$$k_{p} = \frac{V_{r}}{V_{x}}$$

- константа растворимости (константа Генри) Коэффициент растворимости зависит от температуры:

 $\frac{d \ln k_{\rm p}}{dT} = \frac{\Delta H}{RT^2}$

где∆Н - изменение энтальпии при растворении;

R – универсальная газовая постоянная.

Кипение

Вопросы для самостоятельного изучения:

- 1. Определение процесса кипения;
- 2. Явление кавитации;
- 3. Кавитационная эрозия (рассмотреть на примере стенки трубопровода).

Сопротивление растяжению жидкостей

Сопротивление растяжению может возникать только в дегазированных жидкостях. Технические жидкости не сопротивляются растягивающим усилиям.

Поверхностное натяжение

Силы поверхностного натяжения; поверхностное натяжение; капиллярные явления; смачивание.

Особые свойства воды

1.2. Гидростатическое давление. Закон Паскаля

Гидростатика – раздел гидромеханики, изучающий законы равновесия жидкостей и газов. Основное понятие гидростатики – это гидростатическое давление.

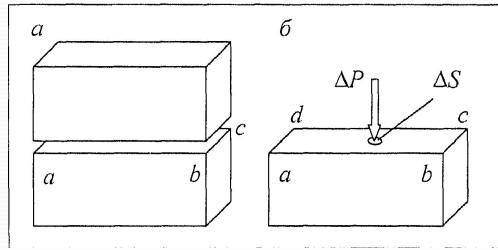


Схема к расчету гидростатического давления

$$p_{\rm cp} = \frac{\Delta P}{\Delta S}$$

$$p = \lim_{\Delta S \to 0} \frac{\Delta P}{\Delta S}$$

Основное уравнение гидростатики

$$p_0 + \rho g h = \text{const}$$
 весовое давление $p_{\text{Bec}} = \rho g h$ $p_0 -$ внешнее давление.

Т.об., полное, или *абсолютное*, *гидростатическое* $p_{abc} = p_0 + p_{bec}$

На практике часто пользуются *избыточным*, или *манометрическим*, *давлением* р_{ман}:

$$p_{\text{MAH}} = p_{\text{afc}} - p_{\text{aTM}} = p_0 + \rho g h_{\text{FM}}$$

Недостаток абсолютного давления до атмосферного называется вакуумом, или вакууметрическим давлением:

$$p_{\text{Bak}} = p_{\text{atm}} - p_{\text{afic}}$$

Закон Паскаля

Давление, производимое на жидкость, передается внутри нее во все стороны (независимо от направления) с одинаковой силой.

На этом законе основаны расчеты машин, работающих под гидростатическим давлением (гидравлические прессы, домкраты и др.).

1.3. Сила гидростатического давления на плоские стенки. Закон Архимеда

Сила гидростатического давления на плоскую поверхность

$$P = (po + \rho g h_{u.m}) \omega,$$

ω - площадь смоченной части поверхности.

Закон Архимеда. На погруженное в жидкость тело действует сила, направленная вертикально вверх и равная весу жидкости, вытесненной телом.

2. Основы гидродинамики

- 2.1. Основы кинематики потока жидкости
- **2.2.** Уравнение Бернулли для потока реальной жидкости

2.1. Основы кинематики потока жидкости 2.1.1. Способы описания движения жидкости жидкости

Кинематика рассматривает способы описания движения жидкости, отвлекаясь от причин этого движения.

Для задания положения и движения сплошной среды, в частности жидкости или газа, существует два способа: метод Лагранжа и метод Эйлера.

Метод Лагранжа

Изучается сама жидкость, движущаяся в неподвижной системе координат. Используется в тех практических задачах, когда нужно исследовать траектории движения отдельных частиц.

Рис. 1.1. Движение «помеченной» лагранжевой частицы

$$x = f_1(x_0, y_0, z_0, t),$$

$$y = f_2(x_0, y_0, z_0, t),$$

$$z = f_3(x_0, y_0, z_0, t),$$
(1.1)

где x, y, z — определяемые величины; x_0 , y_0 , z_0 , t — независимые переменные, называемые переменными Лагранжа.

Метод Эйлера

Объект изучения: связанное с системой координат неподвижное пространство, заполненное движущейся жидкостью.

Изучение движения начинается с исследования распределения скоростей в пространстве и его изменения во времени, т.е. с изучения поля скоростей.

$$u_x = F_1(x, y, z, t),$$

 $u_y = F_2(x, y, z, t),$
 $u_z = F_3(x, y, z, t),$

где u_x , u_y , u_z — определяемые (зависимые) переменные; x, y, z, t — независимые переменные Эйлера.

2.1.2. Траектории частиц и линии

тока

Траектория — линия в пространстве, по которой происходит движение рассматриваемой частицы с течением времени. Этот геометрический образ соответствует описанию движения по методу Лагранжа.

Рис. 1.2. Метод Лагранжа: траектория жидкой частицы. Текущий момент времени на рисунке $t=t_2$

Уравнение (1.2) — дифференциальное уравнение траектории.

Линия тока — векторная линия поля вектора скорости, т.е. линия, в каждой точке которой вектор скорости в данный момент времени направлен по касательной.

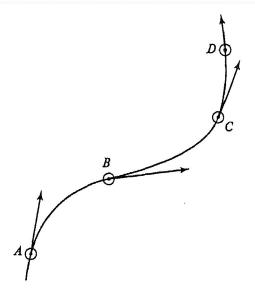


Рис. 1.3. Метод Эйлера: линия тока в данный момент времени

Для вывода дифференциального уравнения линии тока воспользуемся тем обстоятельством, что в любой точке $\{x, y, z\}$ в любой момент времени t элементарный вектор линии тока

$$dl = dxi + dyj + dzk$$

и вектор скорости

$$\mathbf{u} = u_x \mathbf{i} + u_y \mathbf{j} + u_z \mathbf{k}$$

параллельны. Тогда их векторное произведение равно нулю

$$[d\mathbf{l} \times \mathbf{u}] = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ dx & dy & dz \\ u_x & u_y & u_z \end{vmatrix} = 0;$$

$$(u_z dy - u_y dz)\mathbf{i} - (u_z dx - u_x dz)\mathbf{j} + (u_y dx - u_x dy)\mathbf{k} = 0.$$

Отсюда

$$\frac{\mathrm{d}x}{u_x} = \frac{\mathrm{d}y}{u_y}; \quad \frac{\mathrm{d}x}{u_x} = \frac{\mathrm{d}z}{u_z}; \quad \frac{\mathrm{d}y}{u_y} = \frac{\mathrm{d}z}{u_z},$$

дифференциальное уравнение линии тока

$$\frac{dx}{u_x(x, y, z, t)} = \frac{dy}{u_y(x, y, z, t)} = \frac{dz}{u_z(x, y, z, t)}.$$
 (1.3)

Итак, различие траектории и линии тока состоит в том, что траектория — это совокупность положений одной и той эсе частицы в разные моменты времени, линия тока — линия, на которой расположены разные частицы в один и тот же момент времени.

2.1.3. Струи и трубки тока

Часть жидкости, ограниченная поверхностью, образованной траекториями, проходящими через замкнутый контур, называется **струей** (используется в методе Лагранжа).

Часть заполненного жидкостью пространства, которая ограничена поверхностью, образованной линиями тока, проходящими через замкнутый контур, называется **трубкой тока** (используется в методе Эйлера).

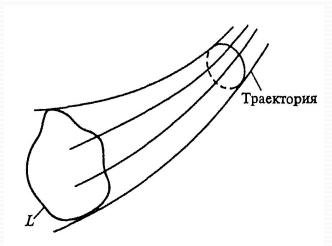


Рис. 1.4. Струя:

L — замкнутый контур; линии — трасктории жидких частиц

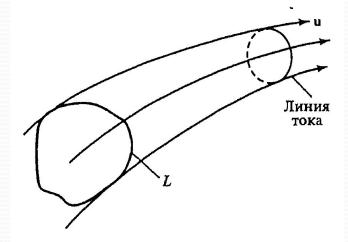


Рис. 1.5. Трубка тока: L — замкнутый контур; линии — линии тока

Совокупность линий тока, проведенных через все точки элементарной площадки $d\omega$ (см. рис. 2.2), называется элементарной струйкой (т.е. элемент арной с труйкой тока).

Установившееся движение жидкости можно представить как совокупность элементарных струек, движущихся с разными скоростями и скользящими одна по другой. Такая совокупность движущихся струек называется в гидравлике потоком жидкости. В общем случае под потоком жидкости подразумевают движение массы жидкости, ограниченное системой поверхностей твердых, жидких или газообразных тел. Потоки по характеру движения могут быть разделены на напорные, безнапорные и струи.

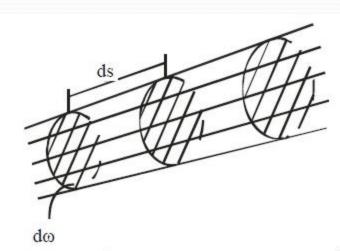


Рис. 2.2. Трубка тока. Элементарная струйка

Поперечное сечение струйки $d\omega$ (см. рис. 2.2), нормальное к линиям тока, называется живым сечением.

Кроме площади живого сечения в технической гидравлике используются понятия смоченный периметр и гидравлический радиус.

Смоченный периметр х представляет собой длину той части поперечного сечения канала (русла), которая соприкасается с движущейся жидкостью.

Гидравлический радиус Rг равен отношению площади живого сечения ω к смоченному периметру:

$$Re = \chi/\omega$$

Объем жидкости, проходящий через живое сечение струйки в единицу времени, называется p а c х o d o м \ni л e м e н m а p н o \ddot{u} c m p y \ddot{u} κ u.

Предположим, что за промежуток времени dt через живое сечение $d\omega$ элементарной струйки проходит объем жидкости dW. Тогда расход элементарной струйки будет равен:

$$dQ = dW/dt$$

Средней скоростью в живом сечении потока называется такая скорость, с которой должны двигаться все частицы жидкости в потоке, чтобы пропустить через его живое сечение действительный расход, проходящий при неравномерном распределении скоростей.

Расход и средняя скорость связаны между собой: υ=Q/ω