

Конспект лекций по электротехнике

Подготовлен:

Степановым К.С., Беловой Л.В., Кралиным А.А., Панковой Н.Г. Кафедра теоретической и общей электротехники.

•Лекция 2

Основные понятия и законы

- Электрическая цепь.
- Обозначения.
- Построение схем.
- Основные законы электротехники.

Электрическая цепь.

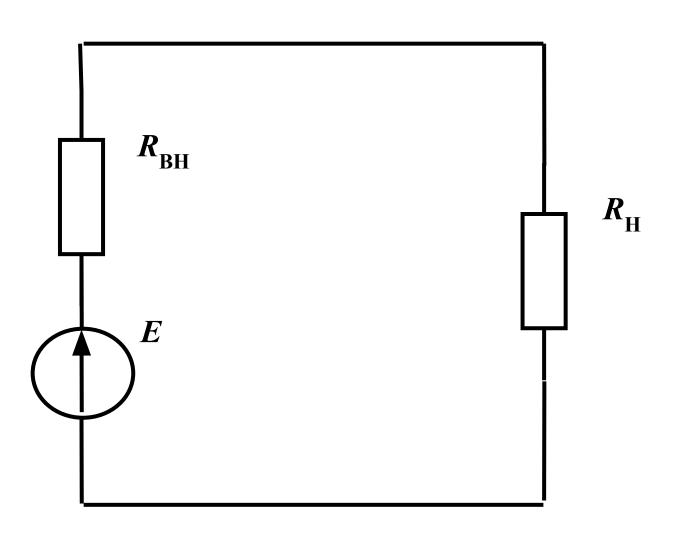
Электрическая цепь

совокупность источников электрической энергии, линий электропередач и электроприемников.

- Для анализа и синтеза электрических цепей вводят понятия:
- **электродвижущей силы (ЭДС)**, обозначается *E*;
- *напряжения*, обозначается *U* (*E* и *U* измеряются в Вольтах [В]);
- тока (I) измеряется в Амперах [A];

- *сопротивления R*, [Ом]; величины, обратной сопротивлению -
- **проводимости (G)** измеряется в Сименсах [См] (*R*=1/*G*);
- *индуктивности L*, единица измерения Генри [Гн];
- емкости С, единица измерения Фарада [Ф];

Обозначения элементов

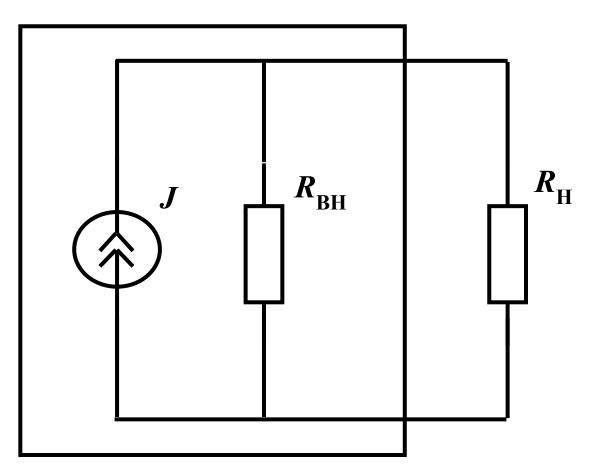

- активные сопротивление и проводимость R , R ,
- индуктивность \longrightarrow ,
- емкость ______ ,
- источник ЭДС -
- источник тока -

 Положительным направлением тока называется направление, в котором перемещаются положительно заряженные частицы или направление, противоположное движению электронов

<u>Источники электроэнергии</u>

- Реальный источник электроэнергии обладает внутренним сопротивлением больше нуля и в электротехнике представляется в виде двух вариантов источник ЭДС и источник тока.
- У идеального источника ЭДС внутреннее сопротивление равно нулю.
- У идеального источника тока внутреннее сопротивление равно бесконечности.

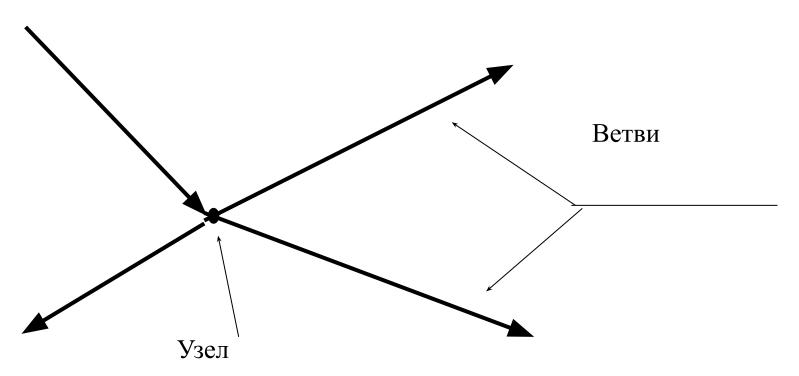
Эквивалентная схема реального источника ЭДС


Вольтамперные характеристики (ВАХ) источников ЭДС

Эквивалентная схема реального источника тока

Эквивалентная схема реального источника

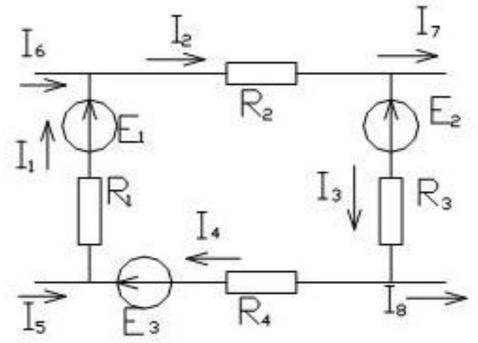
Нагрузка


Вольтамперные характеристики (ВАХ) источников тока

Построение схем.

<u>Узел</u> электрической цепи

• - это точка, в которой соединены 3 или более ветвей.


Ветвь электрической цепи

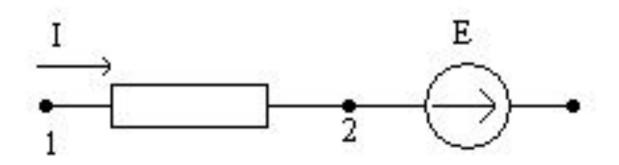
• - участок цепи, расположенный между двумя узлами, состоящий из одного или нескольких последовательно соединенных электрических элементов. По ветви течет один и тот же ток.

 R_2

Замкнутый контур электрической цепи

• это путь, проходящий через несколько ветвей и узлов разветвленной электрической цепи. В замкнутом контуре по разным ветвям протекают разные токи

Основные законы электротехники

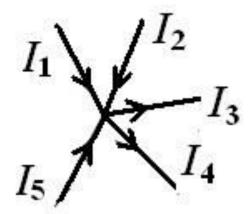

- Закон Ома для участка цепи, несодержащего ЭДС.
- Закон Ома для участка цепи, содержащего ЭДС.
- Первый закон Кирхгофа.
- Второй закон Кирхгофа.
- Закон Джоуля Ленца

Закон Ома для участка цепи, несодержащего ЭДС

 Под напряжением на зажимах цепи понимают разность потенциалов между крайними точками ветви. Ток течет от большего потенциала к меньшему.

$$\frac{1}{1}$$
 $\phi 1 > \phi 2, \qquad U_{12} = \phi 1 - \phi 2, \\
 $I = U_{12}/R = (\phi 1 - \phi 2)/R, \\
U_{12} = IR, \qquad R = U/R.$$

Закон Ома для участка цепи, содержащего ЭДС.

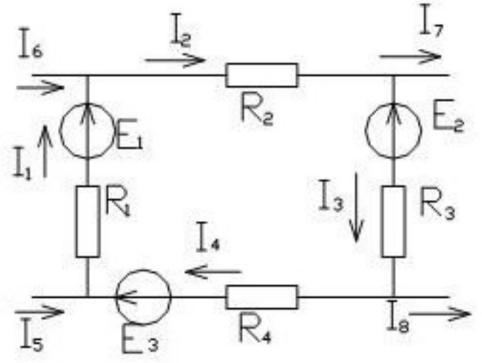


$$I = U_{12}/R = (\varphi 1 - \varphi 2)/R,$$
 $\varphi 2 = \varphi 3 - E,$ $\varphi 1 - \varphi 3 = U_{12} + E.$ Из этого следует: $I = (\varphi 1 - \varphi 3 - E)/R = (U_{13} - E)/R.$

<u>Первый закон Кирхгофа</u>

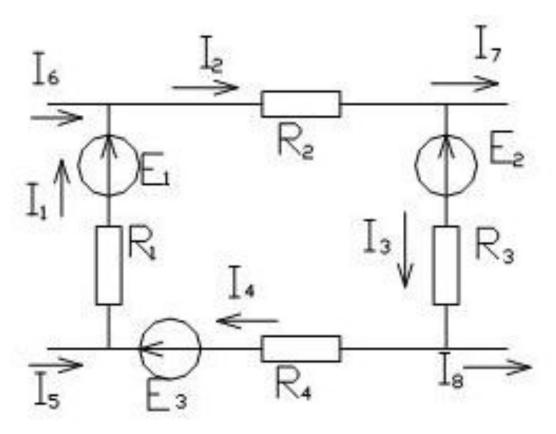
- Алгебраическая сумма токов в любом узле электрической цепи равна нулю:
- $\Sigma Ik = 0$, $I_1+I_2-I_3-I_4+I_5 = 0$,
- или сумма токов, направленных к узлу равна сумме токов, направленных от узла.

$$I_1+I_2+I_5=I_3+I_4$$


Правило первого закона закона

Если ток направлен в узел, то перед ним в уравнении ставится «+», если ток направлен от узла, то «-».

Второй закон Кирхгофа.


• Алгебраическая сумма падений напряжений в любом замкнутом контуре равна алгебраической сумме ЭДС внутри этого

контура.

Второй закон Кирхгофа.

 $\Sigma Ek = \Sigma Ii \cdot Ri$ $I1 \cdot R1 + I2 \cdot R2 + I3 \cdot R3 + I4 \cdot R4 = E1 - E2 + E3$

Правило второго закона закона

• Если направление тока и Е совпадает с направлением обхода то в уравнении берётся со знаком «+», если не совпадает, то «-».

Закон Джоуля - Ленца

- Количество теплоты Q, выделяющееся в проводнике с сопротивлением R определяется по формуле: $Q = \alpha I^2 Rt$. Коэфф. пропорциональности α зависит от выбора ед. измерен.: если I-Ампер, R-Ом, t-секунда, то при $\alpha = 0,239$, Q в калориях, при $\alpha = 1$, Q в Джоулях.
- В электротехнике используют понятие мощности $P = A/t = I^2R = UI = U^2/R$.

Благодарю за внимание