4 КОМБИНАЦИОННЫЕ СТАНДАРТНЫЕ ЭЛЕМЕНТЫ

1 Счетверенный двухвходоврй селектор

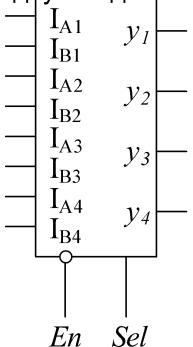


Рисунок 116 – Условное обозначение счетверенного лвухвходового селектора

En	sel	$I_{\Lambda n}$	$I_{_{\mathbf{R}\mathbf{n}}}$	$\mathbf{y}_{\mathbf{p}}$
1	d	d	d	0
0	0	1	d	1
0	0	0	d	0
0	1	d	1	1
0	1	d	0	0

СДНФ:

$$y_{1} = \overline{En} \cdot \overline{sel} \cdot I_{A1} \cdot I_{B1} + \overline{En} \cdot \overline{sel} \cdot I_{A1} \cdot \overline{I_{B1}} + \overline{En} \cdot sel \cdot I_{A1} \cdot I_{B1} + \overline{En} \cdot sel \cdot \overline{I_{A1}} \cdot I_{B1} + \overline{En} \cdot sel \cdot \overline{I_{A1}} \cdot I_{B1} = \overline{En} \cdot \overline{sel} \cdot I_{A1} + \overline{En} \cdot sel \cdot I_{B1}$$

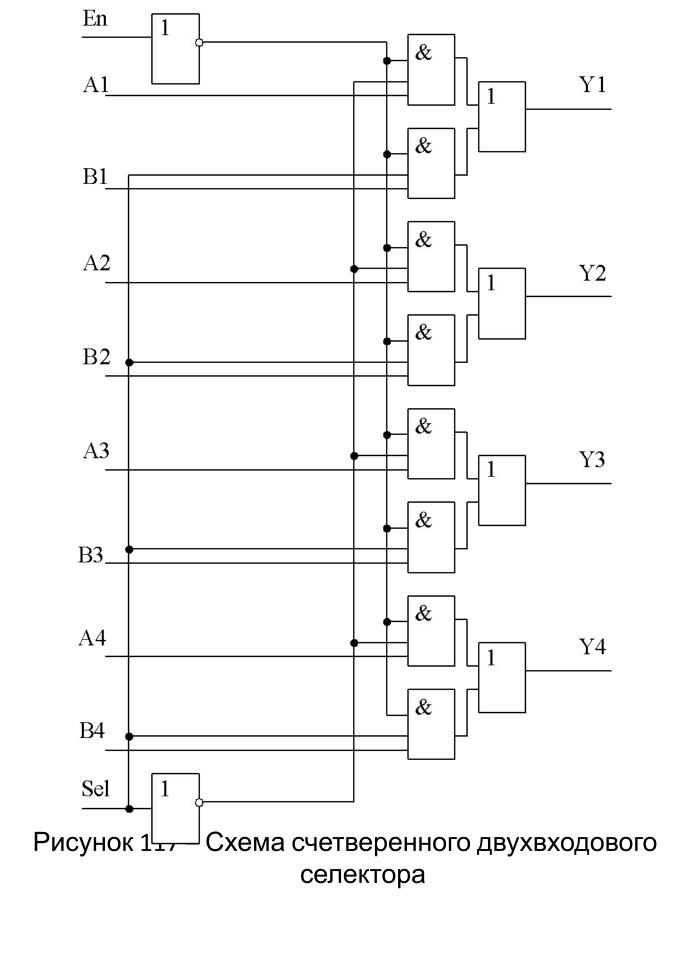
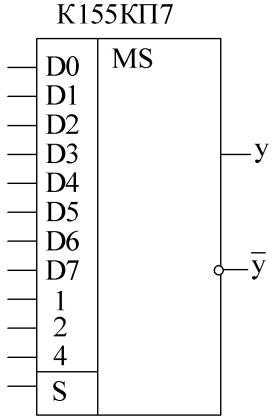


Рисунок 118 – Условное обозначение в иностранной системе



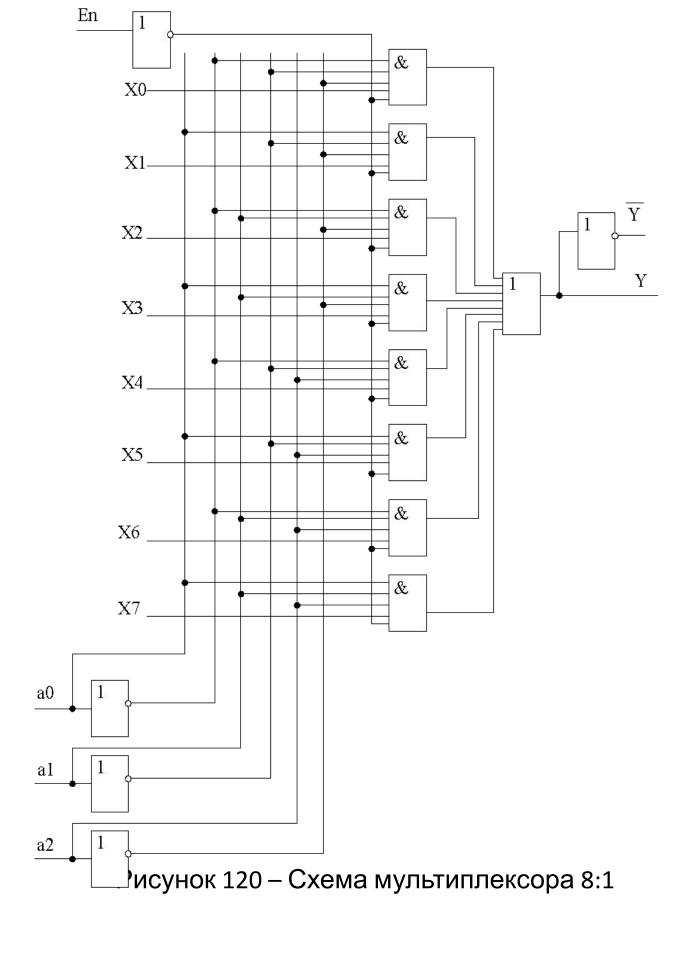

Рисунок 119 – Условное обозначение в Российской системе

Таблица 23 – Таблица истинности мультиплексора 8:1

En	$\mathbf{a_2}$	a ₁	\mathbf{a}_{0}	y
1	d	d	d	0
0	0	0	0	\mathbf{x}_0
0	0	0	1	\mathbf{x}_1
0	0	1	0	\mathbf{x}_2
0	0	1	1	X_3
0	1	0	0	X_4
0	1	0	1	X ₅
0	1	1	0	x ₃ x ₄ x ₅ x ₆
0	1	1	1	X ₇

Для того, чтобы построить схему, составим уравнение.

$$y = \overline{En} \cdot \overline{a_2} \cdot \overline{a_1} \cdot \overline{a_0} \cdot x_0 + \overline{En} \cdot \overline{a_2} \cdot \overline{a_1} \cdot a_0 \cdot x_1 + \overline{En} \cdot a_2 \cdot \overline{a_1} \cdot \overline{a_0} \cdot x_4 + \overline{En} \cdot a_2 \cdot \overline{a_1} \cdot a_0 \cdot x_5 + \overline{En} \cdot a_2 \cdot a_1 \cdot \overline{a_0} \cdot x_6 + \overline{En} \cdot a_2 \cdot a_1 \cdot a_0 \cdot x_7$$

Примеры
1 Дана таблица истинности для *y = f (A, B, C)*.
Таблица 24 – Таблица истинности

A	В	C	y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

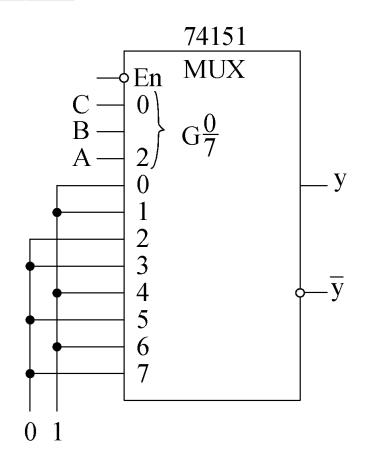


Рисунок 121 – Подача сигналов на адресные и информационные входы

2 Используя мультиплексор 8:1, реализовать функцию f(D, C, B, A), заданную картой Карно.

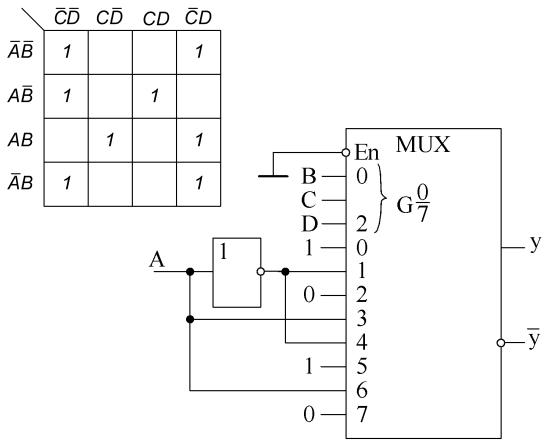


Рисунок 122 – Подача сигналов на адресные и информационные входы мультиплексора Перепишем карту Карно, исключив переменную *A*.

	$ar{C}ar{D}$	$C ar{D}$	CD	ĒD
B	x0 000	x2	x6	x4
ט	000			
В	x1 001	х3	x7	x5
Ь	001			

$$x0=1$$
 $x2=0$ $x4=$ $x6=A$
 $x1=$ $x3=A$ $x5=1$ $x7=0$

3 Дана таблица истинности *y=f(A,B,C,D)*. Решить ее, используя мультиплексор 8:1.

Таблица 25 – Таблица истинности функции *y=f(A,B,C,D)*

A	В	C	D	\mathbf{y}	
0	0	0	0	0	$x0=A$, $x1=0$, $x2=A$, $x3=\overline{A}$
0	0	0	1	0	
0	0	1	0	0	$x4=\overline{A}$, $x5=1$ $x6=A$ $x7=$
0	0	1	1	1	
0	1	0	0	1	
0	1	0	1	1	
0	1	1	0	0	
0	1	1	1	1	
1	0	0	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	0	1	1	0	
1	1	0	0	0	T
1	1	0	1	1	$_{\rm Fn}$ MUX
1	1	1	0	1	$\sqsubseteq_{En} MUX$
1	1	1	1	0	$D \longrightarrow 0$
					$C \longrightarrow C$
					$\mathcal{C} \supset \mathcal{C}$
					$B \longrightarrow 2 J$
Г				•	0у
					0 — 1
	1				
A	1			T	$\frac{2}{3}$
<u> </u>	-	φ_		•	
				•	——— 4
					1 5
					6
					7
	Dia	0.711	N/ 12	э П	OUSTIS CALISTOD IIS SUDSCIILIS IA

Рисунок 123 – Подача сигналов на адресные и информационные входы мультиплексора

4 Осуществить наращивание мультиплексора, используя два мультиплексора 8:1.

Таблица 26 – Таблица истинности для двух

мультиплексоров

A	В	С	D	y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

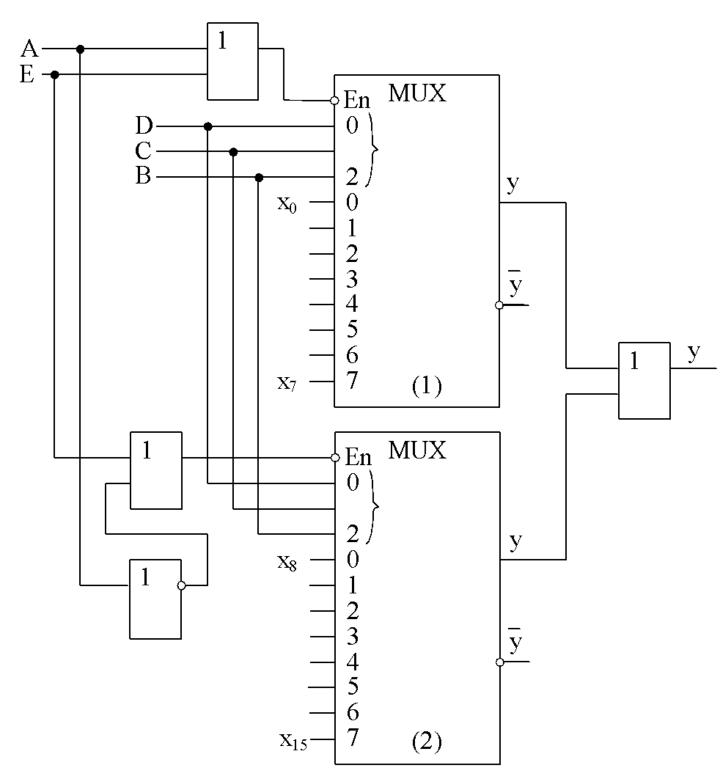
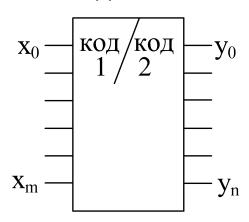
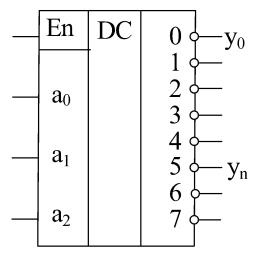
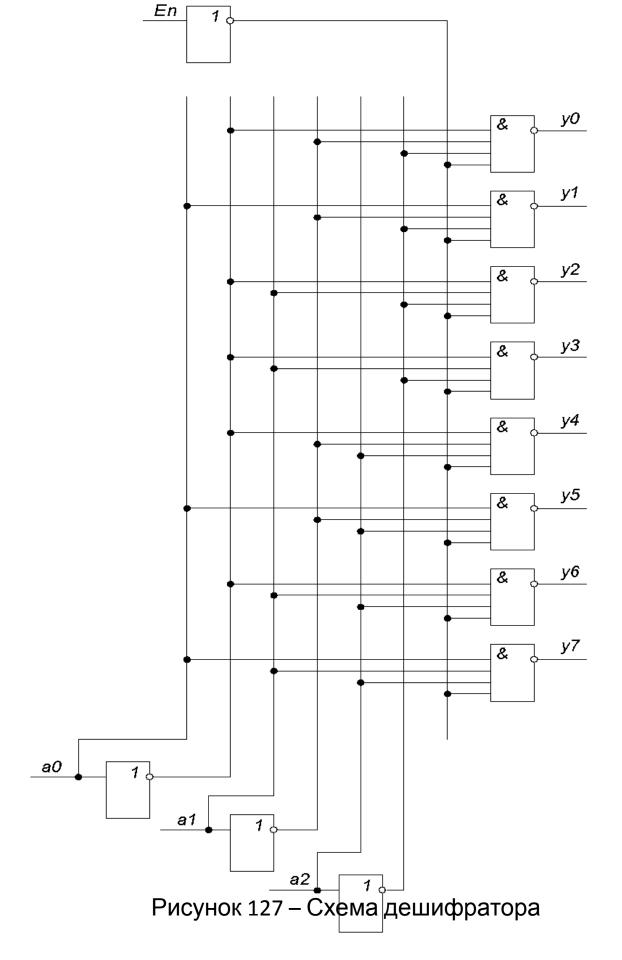
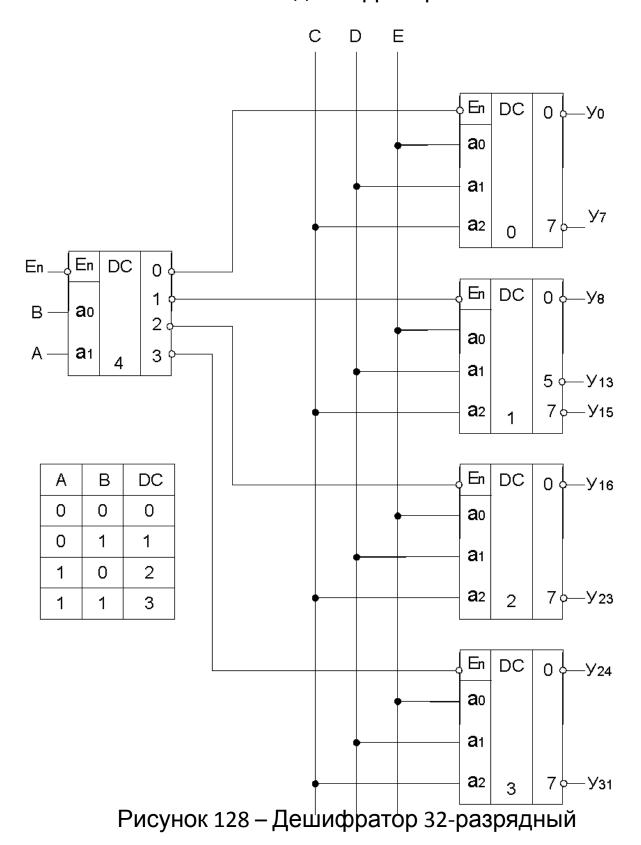



Рисунок 124 – Наращивание мультиплексора при помощи двух мультиплексоров

3 Преобразователи кода

Рисунок 125 – Условное обозначение преобразователя кода


Рисунок 126 – Условное обозначение дешифратора Таблица 27 – Таблица истинности дешифратора

DEC	a,	$\mathbf{a}_{\scriptscriptstyle{1}}$	a	y _o	$\mathbf{y_1}$	y,	y ₂	$\mathbf{y}_{\scriptscriptstyle A}$	y ₅	y ₆	\mathbf{y}_{7}
0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	0	1	1	1	1	1	1
2	0	1	0	1	1	0	1	1	1	1	1
3	0	1	1	1	1	1	0	1	1	1	1
4	1	0	0	1	1	1	1	0	1	1	1
5	1	0	1	1	1	1	1	1	0	1	1
6	1	1	0	1	1	1	1	1	1	0	1
7	1	1	1	1	1	1	1	1	1	1	0

Примеры

1 Построить двухкаскадный дешифратор 1:32, выполненный из пяти дешифраторов.

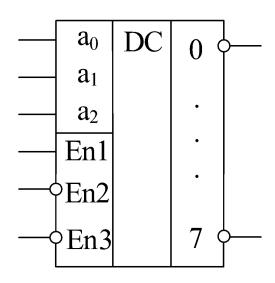


Рисунок 129 – Условное обозначение дешифратора К555ИД7

2 Дана таблица истинности. Реализовать функции с помощью дешифратора.

т.				ـ ـ ـ ـ ـ ـ ـ ـ					
ı	X ₂	x ₁	\mathbf{x}_{0}	\mathbf{y}_3	$\mathbf{y_2}$	$\mathbf{y_1}$	$\mathbf{y_0}$	DEC	
	0	0	0	0	0	0	0	0	
	0	0	1	0	0	1	1	1	
	0	1	0	1	0	0	0	2	
	0	1	1	1	1	1	1	3	
	1	0	0	0	1	0	0	4	
	1	0	1	0	1	0	1	5	
	1	1	0	1	1	0	1	6	
	1	1	1	1	0	1	0	7	

$$y_0 = \overline{Q1} + \overline{Q3} + \overline{Q5} + \overline{Q6} = \overline{Q1 \cdot Q3 \cdot Q5 \cdot Q6}$$

$$y_1 = \overline{Q1 \cdot Q3 \cdot Q7}$$

$$y_2 = \overline{Q3 \cdot Q4 \cdot Q5 \cdot Q6}$$
 $y_3 = \overline{Q2 \cdot Q3 \cdot Q6 \cdot Q7}$

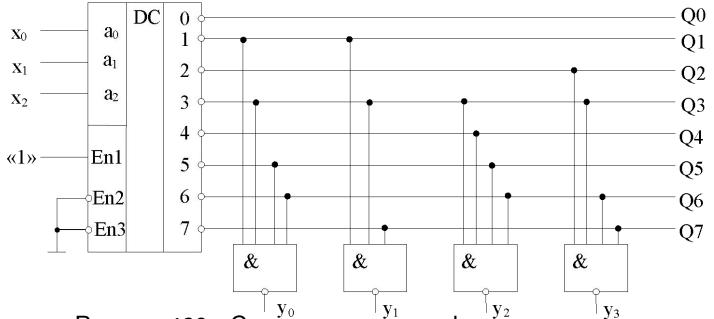


Рисунок 130 – Схема реализации функции с помощью дешифратора

4 Семисегментный индикатор

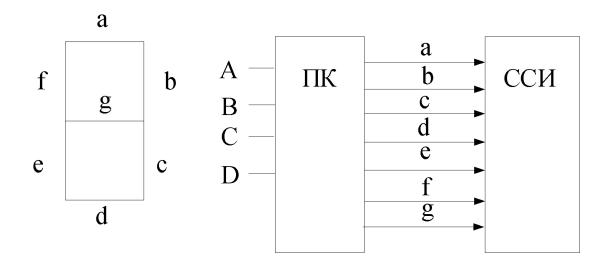


Таблица 29 – Таблица истинности семисегментного

DEC	A	В	C	D	a	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

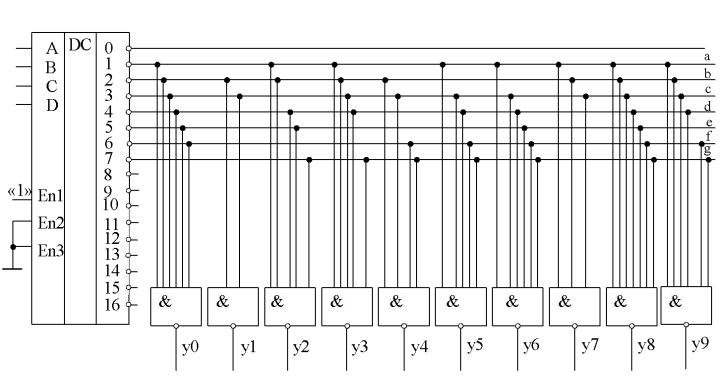


Рисунок 132 – Схема семисегментного индикатора

5 Шифратор

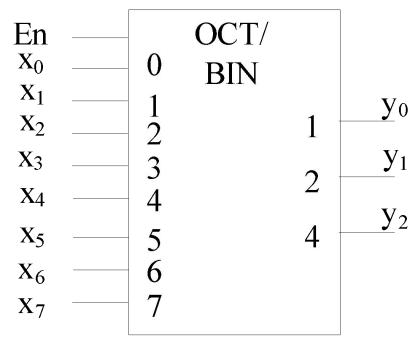


Рисунок 133 – Условное обозначение шифратора Таблица 30 – Таблица истинности шифратора

X	\mathbf{y}_{0}	\mathbf{y}_{1}	\mathbf{y}_2
0	0	0	0
1	0	0	1
2	0	1	0
2 3 4 5 6	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

$$y_0 = x_4 + x_5 + x_6 + x_7$$
$$y_1 = x_2 + x_3 + x_6 + x_7$$
$$y_2 = x_1 + x_3 + x_5 + x_7$$

6 Демультиплексор

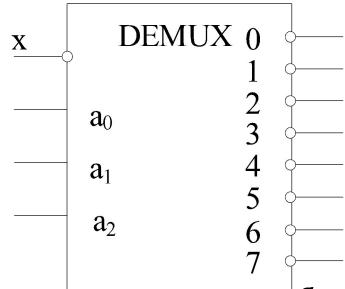
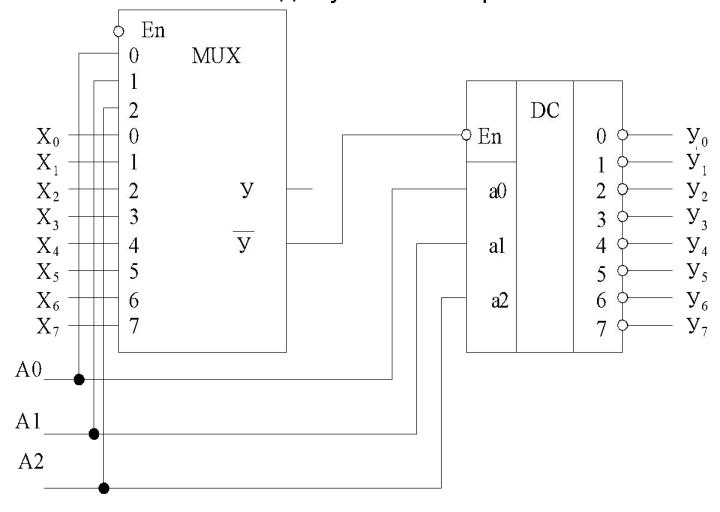
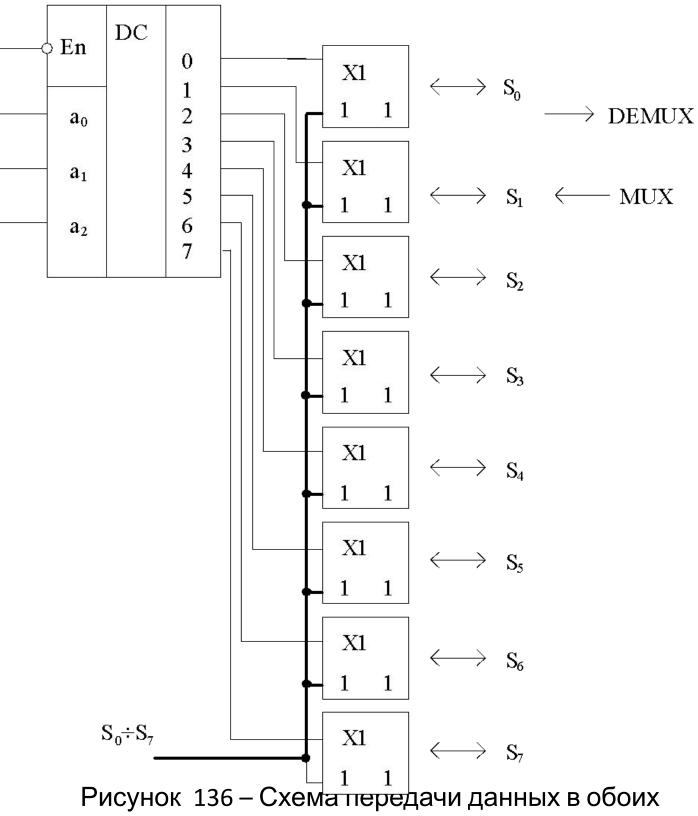




Рисунок 134 – Условное обозначение демультиплексора

7 Аналоговые мультиплексоры и демультиплексоры

направлениях